These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34253721)

  • 1. Visualizing the strongly reshaped skyrmion Hall effect in multilayer wire devices.
    Tan AKC; Ho P; Lourembam J; Huang L; Tan HK; Reichhardt CJO; Reichhardt C; Soumyanarayanan A
    Nat Commun; 2021 Jul; 12(1):4252. PubMed ID: 34253721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zero-Field Nucleation and Fast Motion of Skyrmions Induced by Nanosecond Current Pulses in a Ferrimagnetic Thin Film.
    Quessab Y; Xu JW; Cogulu E; Finizio S; Raabe J; Kent AD
    Nano Lett; 2022 Aug; 22(15):6091-6097. PubMed ID: 35877983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic bilayer-skyrmions without skyrmion Hall effect.
    Zhang X; Zhou Y; Ezawa M
    Nat Commun; 2016 Jan; 7():10293. PubMed ID: 26782905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A magnetic skyrmion diode based on potential well inducting effect.
    Xu M; Chen W; Chen Y; Hu C; Zhang Z; Jiang G; Zhang J
    J Phys Condens Matter; 2023 Jul; 35(42):. PubMed ID: 37437589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current-driven dynamics and ratchet effect of skyrmion bubbles in a ferrimagnetic insulator.
    Vélez S; Ruiz-Gómez S; Schaab J; Gradauskaite E; Wörnle MS; Welter P; Jacot BJ; Degen CL; Trassin M; Fiebig M; Gambardella P
    Nat Nanotechnol; 2022 Aug; 17(8):834-841. PubMed ID: 35788187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic skyrmions without the skyrmion Hall effect in a magnetic nanotrack with perpendicular anisotropy.
    Zhang Y; Luo S; Yan B; Ou-Yang J; Yang X; Chen S; Zhu B; You L
    Nanoscale; 2017 Jul; 9(29):10212-10218. PubMed ID: 28613338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-efficient synthetic antiferromagnetic skyrmion-based artificial neuronal device.
    Verma RS; Raj RK; Verma G; Kaushik BK
    Nanotechnology; 2024 Aug; 35(43):. PubMed ID: 39084230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eliminating Skyrmion Hall Effect in Ferromagnetic Skyrmions.
    Zhang X; Wan G; Zhang J; Zhang YF; Pan J; Du S
    Nano Lett; 2024 Sep; 24(35):10796-10804. PubMed ID: 39190460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiferromagnetic Skyrmion: Stability, Creation and Manipulation.
    Zhang X; Zhou Y; Ezawa M
    Sci Rep; 2016 Apr; 6():24795. PubMed ID: 27099125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deriving the skyrmion Hall angle from skyrmion lattice dynamics.
    Brearton R; Turnbull LA; Verezhak JAT; Balakrishnan G; Hatton PD; van der Laan G; Hesjedal T
    Nat Commun; 2021 May; 12(1):2723. PubMed ID: 33976177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic skyrmion bundles and their current-driven dynamics.
    Tang J; Wu Y; Wang W; Kong L; Lv B; Wei W; Zang J; Tian M; Du H
    Nat Nanotechnol; 2021 Oct; 16(10):1086-1091. PubMed ID: 34341518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Driving skyrmions in flow regime in synthetic ferrimagnets.
    Mallick S; Sassi Y; Prestes NF; Krishnia S; Gallego F; M Vicente Arche L; Denneulin T; Collin S; Bouzehouane K; Thiaville A; Dunin-Borkowski RE; Jeudy V; Fert A; Reyren N; Cros V
    Nat Commun; 2024 Oct; 15(1):8472. PubMed ID: 39349476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordered creation and motion of skyrmions with surface acoustic wave.
    Chen R; Chen C; Han L; Liu P; Su R; Zhu W; Zhou Y; Pan F; Song C
    Nat Commun; 2023 Jul; 14(1):4427. PubMed ID: 37481619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topology dependence of skyrmion Seebeck and skyrmion Nernst effect.
    Weißenhofer M; Nowak U
    Sci Rep; 2022 Apr; 12(1):6801. PubMed ID: 35473940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of skyrmions in Ir/Fe/Co/Pt multilayers and their topological Hall signature.
    Raju M; Yagil A; Soumyanarayanan A; Tan AKC; Almoalem A; Ma F; Auslaender OM; Panagopoulos C
    Nat Commun; 2019 Mar; 10(1):696. PubMed ID: 30842413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skyrmion-skyrmion interaction induced by itinerant electrons in a ferromagnetic strip.
    Iroulart E; Rosales HD
    J Phys Condens Matter; 2022 Dec; 35(4):. PubMed ID: 36541515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles.
    Dohi T; DuttaGupta S; Fukami S; Ohno H
    Nat Commun; 2019 Nov; 10(1):5153. PubMed ID: 31727895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spin wave driven skyrmion-based diode on a T-shaped nanotrack.
    Saini S; Bindal N; Raj RK; Kaushik BK
    Nanoscale; 2024 May; 16(18):9004-9010. PubMed ID: 38623868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlocal accumulation, chemical potential, and Hall effect of skyrmions in Pt/Co/Ir heterostructure.
    Sugimoto S; Koshibae W; Kasai S; Ogawa N; Takahashi Y; Nagaosa N; Tokura Y
    Sci Rep; 2020 Jan; 10(1):1009. PubMed ID: 31974469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skyrmion based majority logic gate by voltage controlled magnetic anisotropy in a nanomagnetic device.
    Paikaray B; Kuchibhotla M; Haldar A; Murapaka C
    Nanotechnology; 2023 Mar; 34(22):. PubMed ID: 36827697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.