These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 34253722)
1. TSC2 regulates lysosome biogenesis via a non-canonical RAGC and TFEB-dependent mechanism. Alesi N; Akl EW; Khabibullin D; Liu HJ; Nidhiry AS; Garner ER; Filippakis H; Lam HC; Shi W; Viswanathan SR; Morroni M; Ferguson SM; Henske EP Nat Commun; 2021 Jul; 12(1):4245. PubMed ID: 34253722 [TBL] [Abstract][Full Text] [Related]
2. A substrate-specific mTORC1 pathway underlies Birt-Hogg-Dubé syndrome. Napolitano G; Di Malta C; Esposito A; de Araujo MEG; Pece S; Bertalot G; Matarese M; Benedetti V; Zampelli A; Stasyk T; Siciliano D; Venuta A; Cesana M; Vilardo C; Nusco E; Monfregola J; Calcagnì A; Di Fiore PP; Huber LA; Ballabio A Nature; 2020 Sep; 585(7826):597-602. PubMed ID: 32612235 [TBL] [Abstract][Full Text] [Related]
3. Multistep regulation of TFEB by MTORC1. Vega-Rubin-de-Celis S; Peña-Llopis S; Konda M; Brugarolas J Autophagy; 2017 Mar; 13(3):464-472. PubMed ID: 28055300 [TBL] [Abstract][Full Text] [Related]
4. Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex. Lawrence RE; Fromm SA; Fu Y; Yokom AL; Kim DJ; Thelen AM; Young LN; Lim CY; Samelson AJ; Hurley JH; Zoncu R Science; 2019 Nov; 366(6468):971-977. PubMed ID: 31672913 [TBL] [Abstract][Full Text] [Related]
5. TFEB drives mTORC1 hyperactivation and kidney disease in Tuberous Sclerosis Complex. Alesi N; Khabibullin D; Rosenthal DM; Akl EW; Cory PM; Alchoueiry M; Salem S; Daou M; Gibbons WF; Chen JA; Zhang L; Filippakis H; Graciotti L; Miceli C; Monfregola J; Vilardo C; Morroni M; Di Malta C; Napolitano G; Ballabio A; Henske EP Nat Commun; 2024 Jan; 15(1):406. PubMed ID: 38195686 [TBL] [Abstract][Full Text] [Related]
6. Structure of the lysosomal mTORC1-TFEB-Rag-Ragulator megacomplex. Cui Z; Napolitano G; de Araujo MEG; Esposito A; Monfregola J; Huber LA; Ballabio A; Hurley JH Nature; 2023 Feb; 614(7948):572-579. PubMed ID: 36697823 [TBL] [Abstract][Full Text] [Related]
7. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. Petit CS; Roczniak-Ferguson A; Ferguson SM J Cell Biol; 2013 Sep; 202(7):1107-22. PubMed ID: 24081491 [TBL] [Abstract][Full Text] [Related]
8. TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis. Wang W; Xia Z; Farré JC; Subramani S Autophagy; 2018; 14(9):1574-1585. PubMed ID: 29940807 [TBL] [Abstract][Full Text] [Related]
9. Impaired TFEB-mediated lysosomal biogenesis promotes the development of pancreatitis in mice and is associated with human pancreatitis. Wang S; Ni HM; Chao X; Wang H; Bridges B; Kumer S; Schmitt T; Mareninova O; Gukovskaya A; De Lisle RC; Ballabio A; Pacher P; Ding WX Autophagy; 2019 Nov; 15(11):1954-1969. PubMed ID: 30894069 [TBL] [Abstract][Full Text] [Related]
10. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. Settembre C; Zoncu R; Medina DL; Vetrini F; Erdin S; Erdin S; Huynh T; Ferron M; Karsenty G; Vellard MC; Facchinetti V; Sabatini DM; Ballabio A EMBO J; 2012 Mar; 31(5):1095-108. PubMed ID: 22343943 [TBL] [Abstract][Full Text] [Related]
11. Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2-Rheb GTPase pathway. Yoshida S; Hong S; Suzuki T; Nada S; Mannan AM; Wang J; Okada M; Guan KL; Inoki K J Biol Chem; 2011 Sep; 286(37):32651-60. PubMed ID: 21784859 [TBL] [Abstract][Full Text] [Related]
12. Folliculin promotes substrate-selective mTORC1 activity by activating RagC to recruit TFE3. Li K; Wada S; Gosis BS; Thorsheim C; Loose P; Arany Z PLoS Biol; 2022 Mar; 20(3):e3001594. PubMed ID: 35358174 [TBL] [Abstract][Full Text] [Related]
14. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. Martina JA; Puertollano R J Cell Biol; 2013 Feb; 200(4):475-91. PubMed ID: 23401004 [TBL] [Abstract][Full Text] [Related]
15. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3. Paquette M; El-Houjeiri L; C Zirden L; Puustinen P; Blanchette P; Jeong H; Dejgaard K; Siegel PM; Pause A Autophagy; 2021 Dec; 17(12):3957-3975. PubMed ID: 33734022 [TBL] [Abstract][Full Text] [Related]
16. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Roczniak-Ferguson A; Petit CS; Froehlich F; Qian S; Ky J; Angarola B; Walther TC; Ferguson SM Sci Signal; 2012 Jun; 5(228):ra42. PubMed ID: 22692423 [TBL] [Abstract][Full Text] [Related]
17. TFEB activation restores migration ability to Tsc1-deficient adult neural stem/progenitor cells. Magini A; Polchi A; Di Meo D; Mariucci G; Sagini K; De Marco F; Cassano T; Giovagnoli S; Dolcetta D; Emiliani C Hum Mol Genet; 2017 Sep; 26(17):3303-3312. PubMed ID: 28637240 [TBL] [Abstract][Full Text] [Related]
18. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Martina JA; Chen Y; Gucek M; Puertollano R Autophagy; 2012 Jun; 8(6):903-14. PubMed ID: 22576015 [TBL] [Abstract][Full Text] [Related]
19. Regulation of TFEB and V-ATPases by mTORC1. Peña-Llopis S; Vega-Rubin-de-Celis S; Schwartz JC; Wolff NC; Tran TA; Zou L; Xie XJ; Corey DR; Brugarolas J EMBO J; 2011 Jul; 30(16):3242-58. PubMed ID: 21804531 [TBL] [Abstract][Full Text] [Related]
20. Tuberous sclerosis-2 (TSC2) regulates the stability of death-associated protein kinase-1 (DAPK) through a lysosome-dependent degradation pathway. Lin Y; Henderson P; Pettersson S; Satsangi J; Hupp T; Stevens C FEBS J; 2011 Jan; 278(2):354-70. PubMed ID: 21134130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]