BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34254101)

  • 41. Direct observation of the Zr
    Vandebroek L; Van Meervelt L; Parac-Vogt TN
    Acta Crystallogr C Struct Chem; 2018 Nov; 74(Pt 11):1348-1354. PubMed ID: 30398187
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sequence-specific Ni(II)-dependent peptide bond hydrolysis for protein engineering: reaction conditions and molecular mechanism.
    Kopera E; Krezel A; Protas AM; Belczyk A; Bonna A; Wysłouch-Cieszyńska A; Poznański J; Bal W
    Inorg Chem; 2010 Jul; 49(14):6636-45. PubMed ID: 20550138
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transition-metal complexes as enzyme-like reagents for protein cleavage: complex cis-[Pt(en)(H2O)2]2+ as a new methionine-specific protease.
    Milović NM; Dutca LM; Kostić NM
    Chemistry; 2003 Oct; 9(20):5097-106. PubMed ID: 14562327
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanism of the highly effective peptide bond hydrolysis by MOF-808 catalyst under biologically relevant conditions.
    Conic D; Pierloot K; Parac-Vogt TN; Harvey JN
    Phys Chem Chem Phys; 2020 Nov; 22(43):25136-25145. PubMed ID: 33118561
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enzyme embedded metal organic framework (enzyme-MOF): De novo approaches for immobilization.
    Nadar SS; Vaidya L; Rathod VK
    Int J Biol Macromol; 2020 Apr; 149():861-876. PubMed ID: 31987954
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neighboring Zn-Zr Sites in a Metal-Organic Framework for CO
    Zhang J; An B; Li Z; Cao Y; Dai Y; Wang W; Zeng L; Lin W; Wang C
    J Am Chem Soc; 2021 Jun; 143(23):8829-8837. PubMed ID: 34096297
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MOFzyme: Intrinsic protease-like activity of Cu-MOF.
    Li B; Chen D; Wang J; Yan Z; Jiang L; Deliang Duan ; He J; Luo Z; Zhang J; Yuan F
    Sci Rep; 2014 Oct; 4():6759. PubMed ID: 25342169
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrolysis of the amide bond in methionine-containing peptides catalyzed by various palladium(II) complexes: dependence of the hydrolysis rate on the steric bulk of the catalyst.
    Rajković S; Glisić BD; Zivković MD; Djuran MI
    Bioorg Chem; 2009 Oct; 37(5):173-9. PubMed ID: 19656547
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis and catalysis of di- and tetranuclear metal sandwich-type silicotungstates [(gamma-SiW10O36)2M2(mu-OH)2]10- and [(gamma-SiW10O36)2M4(mu4-O)(mu-OH)6]8- (M = Zr or Hf).
    Kikukawa Y; Yamaguchi S; Tsuchida K; Nakagawa Y; Uehara K; Yamaguchi K; Mizuno N
    J Am Chem Soc; 2008 Apr; 130(16):5472-8. PubMed ID: 18370387
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fast and scalable synthesis of uniform zirconium-, hafnium-based metal-organic framework nanocrystals.
    He T; Xu X; Ni B; Wang H; Long Y; Hu W; Wang X
    Nanoscale; 2017 Dec; 9(48):19209-19215. PubMed ID: 29188246
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Environmentally Friendly Enzyme Immobilization on MOF Materials.
    Gascón Pérez V; Sánchez-Sánchez M
    Methods Mol Biol; 2020; 2100():271-296. PubMed ID: 31939130
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expanding the reactivity of inorganic clusters towards proteins: the interplay between the redox and hydrolytic activity of Ce(iv)-substituted polyoxometalates as artificial proteases.
    Abdelhameed SAM; Ly HGT; Moons J; de Azambuja F; Proost P; Parac-Vogt TN
    Chem Sci; 2021 Aug; 12(31):10655-10663. PubMed ID: 34447559
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dual-Selective Catalysis in Dephosphorylation Tuned by Hf
    Dong J; An HD; Yue ZK; Hou SL; Chen Y; Zhang ZJ; Cheng P; Peng Q; Zhao B
    ACS Cent Sci; 2021 May; 7(5):831-840. PubMed ID: 34079899
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Urea metal-organic frameworks as effective and size-selective hydrogen-bond catalysts.
    Roberts JM; Fini BM; Sarjeant AA; Farha OK; Hupp JT; Scheidt KA
    J Am Chem Soc; 2012 Feb; 134(7):3334-7. PubMed ID: 22296523
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly defective ultra-small tetravalent MOF nanocrystals.
    Dai S; Simms C; Patriarche G; Daturi M; Tissot A; Parac-Vogt TN; Serre C
    Nat Commun; 2024 Apr; 15(1):3434. PubMed ID: 38653991
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theoretical insights into the mechanism of selective Peptide bond hydrolysis catalyzed by [Pd(H(2)O)(4)](2+).
    Kumar A; Zhu X; Walsh K; Prabhakar R
    Inorg Chem; 2010 Jan; 49(1):38-46. PubMed ID: 19958017
    [TBL] [Abstract][Full Text] [Related]  

  • 57. One-pot synthesis and biochemical characterization of protease metal organic framework (protease@MOF) and its application on the hydrolysis of fish protein-waste.
    Badoei-Dalfard A; Khankari S; Karami Z
    Colloids Surf B Biointerfaces; 2020 Dec; 196():111318. PubMed ID: 32871443
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Seven Post-synthetic Covalent Reactions in Tandem Leading to Enzyme-like Complexity within Metal-Organic Framework Crystals.
    Fracaroli AM; Siman P; Nagib DA; Suzuki M; Furukawa H; Toste FD; Yaghi OM
    J Am Chem Soc; 2016 Jul; 138(27):8352-5. PubMed ID: 27346625
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Catalytic hydrolysis of cellulose by phosphotungstic acid-supported functionalized metal-organic frameworks with different electronegative groups.
    Han J; Wang Y; Wan J; Ma Y
    Environ Sci Pollut Res Int; 2019 May; 26(15):15345-15353. PubMed ID: 30929176
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tetracycline removal from aqueous solution using zirconium-based metal-organic frameworks (Zr-MOFs) with different pore size and topology: Adsorption isotherm, kinetic and mechanism studies.
    Xia J; Gao Y; Yu G
    J Colloid Interface Sci; 2021 May; 590():495-505. PubMed ID: 33567374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.