BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 34254168)

  • 1. The Evolutionary Fate of Mitochondrial Aminoacyl-tRNA Synthetases in Amitochondrial Organisms.
    Igloi GL
    J Mol Evol; 2021 Aug; 89(7):484-493. PubMed ID: 34254168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria.
    Duchêne AM; Pujol C; Maréchal-Drouard L
    Curr Genet; 2009 Feb; 55(1):1-18. PubMed ID: 19083240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identity elements for the aminoacylation of metazoan mitochondrial tRNA(Arg) have been widely conserved throughout evolution and ensure the fidelity of the AGR codon reassignment.
    Igloi GL; Leisinger AK
    RNA Biol; 2014; 11(10):1313-23. PubMed ID: 25603118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary Adjustment of tRNA Identity Rules in Bacillariophyta for Recognition by an Aminoacyl-tRNA Synthetase Adds a Facet to the Origin of Diatoms.
    Igloi GL
    J Mol Evol; 2022 Apr; 90(2):215-226. PubMed ID: 35325255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Existence of two forms of rat liver arginyl-tRNA synthetase suggests channeling of aminoacyl-tRNA for protein synthesis.
    Sivaram P; Deutscher MP
    Proc Natl Acad Sci U S A; 1990 May; 87(10):3665-9. PubMed ID: 2187187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of various arginine transfer ribonucleic acids with arginyl-tRNA synthetase purified from human placenta.
    Katon N; Saneyoshi M
    Nucleic Acids Symp Ser; 1979; (6):s119-22. PubMed ID: 547226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of identity elements on the aminoacylation of tRNA(Arg) by plant and Escherichia coli arginyl-tRNA synthetases.
    Aldinger CA; Leisinger AK; Igloi GL
    FEBS J; 2012 Oct; 279(19):3622-3638. PubMed ID: 22831759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evidence for the evolution of the eukaryotic mitochondrial arginyl-tRNA synthetase from the prokaryotic suborder Cystobacterineae.
    Igloi GL
    FEBS Lett; 2020 Mar; 594(5):951-957. PubMed ID: 31705651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic mechanism of arginyl-tRNA synthetase from human placenta.
    Wang HY; Pan F
    Int J Biochem; 1984; 16(12):1379-85. PubMed ID: 6530022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threonyl-tRNA, lysyl-tRNA and arginyl-tRNA synthetases from Baker's yeast. Substrate specificity with regard to ATP analogues.
    Freist W; Sternbach H; von der Haar F; Cramer F
    Eur J Biochem; 1978 Mar; 84(2):499-502. PubMed ID: 346350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of the arginyl-tRNA synthetase protein during purification by affinity chromatography on immobilized total tRNA and immobilized tRNA, specific for arginyl-tRNA synthetase.
    Berg BH
    Biochem Mol Biol Int; 1993 Oct; 31(2):219-28. PubMed ID: 8275012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the thermolability and hydrophobic properties of high- and low-molecular-weight forms of rabbit liver arginyl-tRNA synthetase.
    Berbeć H; Paszkowska A
    Mol Cell Biochem; 1989 Apr; 86(2):125-33. PubMed ID: 2770710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tRNA-dependent activation of arginine by arginyl-tRNA synthetase requires inter-domain communication.
    Lazard M; Agou F; Kerjan P; Mirande M
    J Mol Biol; 2000 Sep; 302(4):991-1004. PubMed ID: 10993737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valyl-tRNA synthetase gene of Escherichia coli K12. Primary structure and homology within a family of aminoacyl-TRNA synthetases.
    Heck JD; Hatfield GW
    J Biol Chem; 1988 Jan; 263(2):868-77. PubMed ID: 3275660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenosine triphosphate consumption by bacterial arginyl-transfer ribonucleic acid synthetases.
    Godeau JM; Charlier J
    Biochem J; 1979 May; 179(2):407-12. PubMed ID: 384995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraphylum diversity and complex evolution of cyanobacterial aminoacyl-tRNA synthetases.
    Luque I; Riera-Alberola ML; Andújar A; Ochoa de Alda JA
    Mol Biol Evol; 2008 Nov; 25(11):2369-89. PubMed ID: 18775898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli.
    Airas RK
    Eur J Biochem; 1996 Aug; 240(1):223-31. PubMed ID: 8797857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arg-tRNA synthetase links inflammatory metabolism to RNA splicing and nuclear trafficking via SRRM2.
    Cui H; Diedrich JK; Wu DC; Lim JJ; Nottingham RM; Moresco JJ; Yates JR; Blencowe BJ; Lambowitz AM; Schimmel P
    Nat Cell Biol; 2023 Apr; 25(4):592-603. PubMed ID: 37059883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction pathway and rate-determining step in the aminoacylation of tRNAArg catalyzed by the arginyl-tRNA synthetase from yeast.
    Fersht AR; Gangloff J; Dirheimer G
    Biochemistry; 1978 Sep; 17(18):3740-6. PubMed ID: 359044
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.