BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34254347)

  • 1. Assurance in vaccine efficacy clinical trial design based on immunological responses.
    Callegaro A; Zahaf T; Tibaldi F
    Biom J; 2021 Oct; 63(7):1434-1443. PubMed ID: 34254347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive probability of success using surrogate endpoints.
    Saint-Hilary G; Barboux V; Pannaux M; Gasparini M; Robert V; Mastrantonio G
    Stat Med; 2019 May; 38(10):1753-1774. PubMed ID: 30548627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian methods for setting sample sizes and choosing allocation ratios in phase II clinical trials with time-to-event endpoints.
    Cotterill A; Whitehead J
    Stat Med; 2015 May; 34(11):1889-903. PubMed ID: 25620687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vaccine clinical trials with dynamic borrowing of historical controls: Two retrospective studies.
    Callegaro A; Karkada N; Aris E; Zahaf T
    Pharm Stat; 2023; 22(3):475-491. PubMed ID: 36606496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assurance calculations for planning clinical trials with time-to-event outcomes.
    Ren S; Oakley JE
    Stat Med; 2014 Jan; 33(1):31-45. PubMed ID: 23861270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sample size determination for a binary response in a superiority clinical trial using a hybrid classical and Bayesian procedure.
    Ciarleglio MM; Arendt CD
    Trials; 2017 Feb; 18(1):83. PubMed ID: 28231813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seamless phase 2/3 design for trials with multiple co-primary endpoints using Bayesian predictive power.
    Yang J; Li G; Yang D; Wu J; Wang J; Gao X; Liu P
    BMC Med Res Methodol; 2024 Jan; 24(1):12. PubMed ID: 38233758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian model selection techniques as decision support for shaping a statistical analysis plan of a clinical trial: an example from a vertigo phase III study with longitudinal count data as primary endpoint.
    Adrion C; Mansmann U
    BMC Med Res Methodol; 2012 Sep; 12():137. PubMed ID: 22962944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optimal Bayesian predictive probability design for phase II clinical trials with simple and complicated endpoints.
    Guo B; Liu S
    Biom J; 2020 Mar; 62(2):339-349. PubMed ID: 31402481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A behavioural Bayes approach to the determination of sample size for clinical trials considering efficacy and safety: imbalanced sample size in treatment groups.
    Kikuchi T; Gittins J
    Stat Methods Med Res; 2011 Aug; 20(4):389-400. PubMed ID: 20223784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian sample size determination for phase IIA clinical trials using historical data and semi-parametric prior's elicitation.
    Berchialla P; Zohar S; Baldi I
    Pharm Stat; 2019 Mar; 18(2):198-211. PubMed ID: 30440109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Bayesian sample size determination in clinical trials.
    Brutti P; De Santis F; Gubbiotti S
    Stat Med; 2008 Jun; 27(13):2290-306. PubMed ID: 18205170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of treatment effect on a surrogate endpoint for planning a study to evaluate treatment effect on a final endpoint.
    Quan H; Xu Z; Luo J; Paux G; Cho M; Chen X
    Pharm Stat; 2023; 22(4):633-649. PubMed ID: 36866697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian sample size calculation for estimation of the difference between two binomial proportions.
    Pezeshk H; Nematollahi N; Maroufy V; Marriott P; Gittins J
    Stat Methods Med Res; 2013 Dec; 22(6):598-611. PubMed ID: 21436190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating clinical development of HIV vaccine strategies: methodological challenges and considerations in constructing an optimised multi-arm phase I/II trial design.
    Richert L; Doussau A; Lelièvre JD; Arnold V; Rieux V; Bouakane A; Lévy Y; Chêne G; Thiébaut R;
    Trials; 2014 Feb; 15():68. PubMed ID: 24571662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ignorance is not bliss: Statistical power is not probability of trial success.
    Zierhut ML; Bycott P; Gibbs MA; Smith BP; Vicini P
    Clin Pharmacol Ther; 2016 Apr; 99(4):356-9. PubMed ID: 26331445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Bayesian expected power via Bayesian bootstrap.
    Liu F
    Stat Med; 2018 Oct; 37(24):3471-3485. PubMed ID: 29938832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advantages of a wholly Bayesian approach to assessing efficacy in early drug development: a case study.
    Walley RJ; Smith CL; Gale JD; Woodward P
    Pharm Stat; 2015; 14(3):205-15. PubMed ID: 25865949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A randomized, double-blind, placebo-controlled phase III clinical trial to evaluate the efficacy and safety of SARS-CoV-2 vaccine (inactivated, Vero cell): a structured summary of a study protocol for a randomised controlled trial.
    Akova M; Unal S
    Trials; 2021 Apr; 22(1):276. PubMed ID: 33849629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practical experiences of adopting assurance as a quantitative framework to support decision making in drug development.
    Crisp A; Miller S; Thompson D; Best N
    Pharm Stat; 2018 Jul; 17(4):317-328. PubMed ID: 29635777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.