BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 34254562)

  • 1. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments.
    Rodríguez-Fernández A; Lobo-Prat J; Font-Llagunes JM
    J Neuroeng Rehabil; 2021 Feb; 18(1):22. PubMed ID: 33526065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wearable rehabilitation exoskeletons of the lower limb: analysis of versatility and adaptability.
    Plaza A; Hernandez M; Puyuelo G; Garces E; Garcia E
    Disabil Rehabil Assist Technol; 2023 May; 18(4):392-406. PubMed ID: 33332159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons.
    Young AJ; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):171-182. PubMed ID: 26829794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles.
    Sanchez-Villamañan MDC; Gonzalez-Vargas J; Torricelli D; Moreno JC; Pons JL
    J Neuroeng Rehabil; 2019 May; 16(1):55. PubMed ID: 31072370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies.
    Proietti T; Crocher V; Roby-Brami A; Jarrasse N
    IEEE Rev Biomed Eng; 2016; 9():4-14. PubMed ID: 27071194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy.
    Chen G; Chan CK; Guo Z; Yu H
    Crit Rev Biomed Eng; 2013; 41(4-5):343-63. PubMed ID: 24941413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The-state-of-the-art of soft robotics to assist mobility: a review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions.
    Morris L; Diteesawat RS; Rahman N; Turton A; Cramp M; Rossiter J
    J Neuroeng Rehabil; 2023 Jan; 20(1):18. PubMed ID: 36717869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensors and Actuation Technologies in Exoskeletons: A Review.
    Tiboni M; Borboni A; Vérité F; Bregoli C; Amici C
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and analysis of a lower limb assistive exoskeleton robot.
    Li X; Wang KY; Yang ZY
    Technol Health Care; 2024; 32(S1):79-93. PubMed ID: 38759039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower limb rehabilitation robotics: The current understanding and technology.
    Bhardwaj S; Khan AA; Muzammil M
    Work; 2021; 69(3):775-793. PubMed ID: 34180443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton.
    Wang W; He Y; Li F; Li J; Liu J; Wu X
    Technol Health Care; 2023; 31(1):103-115. PubMed ID: 35754239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible lower limb exoskeleton systems: A review.
    Meng Q; Zeng Q; Xie Q; Fei C; Kong B; Lu X; Wang H; Yu H
    NeuroRehabilitation; 2022; 50(4):367-390. PubMed ID: 35147568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technology acceptance and perceptions of robotic assistive devices by older adults - implications for exoskeleton design.
    Shore L; de Eyto A; O'Sullivan L
    Disabil Rehabil Assist Technol; 2022 Oct; 17(7):782-790. PubMed ID: 32988251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The improvement of the lower limb exoskeletons on the gait of patients with spinal cord injury: A protocol for systematic review and meta-analysis.
    Xue X; Yang X; Tu H; Liu W; Kong D; Fan Z; Deng Z; Li N
    Medicine (Baltimore); 2022 Jan; 101(4):e28709. PubMed ID: 35089234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do powered over-ground lower limb robotic exoskeletons affect outcomes in the rehabilitation of people with acquired brain injury?
    Postol N; Marquez J; Spartalis S; Bivard A; Spratt NJ
    Disabil Rehabil Assist Technol; 2019 Nov; 14(8):764-775. PubMed ID: 30241453
    [No Abstract]   [Full Text] [Related]  

  • 19. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study.
    Park JH; Park G; Kim HY; Lee JY; Ham Y; Hwang D; Kwon S; Shin JH
    J Neuroeng Rehabil; 2020 Oct; 17(1):137. PubMed ID: 33076952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.
    del-Ama AJ; Gil-Agudo A; Pons JL; Moreno JC
    J Neuroeng Rehabil; 2014 Mar; 11():27. PubMed ID: 24594302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.