These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 34254562)

  • 21. Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness.
    de Miguel-Fernández J; Lobo-Prat J; Prinsen E; Font-Llagunes JM; Marchal-Crespo L
    J Neuroeng Rehabil; 2023 Feb; 20(1):23. PubMed ID: 36805777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain-machine interfaces for controlling lower-limb powered robotic systems.
    He Y; Eguren D; Azorín JM; Grossman RG; Luu TP; Contreras-Vidal JL
    J Neural Eng; 2018 Apr; 15(2):021004. PubMed ID: 29345632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical Sensing for Lower Limb Soft Exoskeletons: Recent Progress and Challenges.
    Totaro M; Di Natali C; Bernardeschi I; Ortiz J; Beccai L
    Adv Exp Med Biol; 2019; 1170():69-85. PubMed ID: 32067203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y; Liu Z; Feng Z
    Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robotic devices for paediatric rehabilitation: a review of design features.
    Gonzalez A; Garcia L; Kilby J; McNair P
    Biomed Eng Online; 2021 Sep; 20(1):89. PubMed ID: 34488777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Wearable Sensors in Actuation and Control of Powered Ankle Exoskeletons: A Comprehensive Review.
    Kian A; Widanapathirana G; Joseph AM; Lai DTH; Begg R
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Opportunities and challenges in the development of exoskeletons for locomotor assistance.
    Siviy C; Baker LM; Quinlivan BT; Porciuncula F; Swaminathan K; Awad LN; Walsh CJ
    Nat Biomed Eng; 2023 Apr; 7(4):456-472. PubMed ID: 36550303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of Robotics in Gait Rehabilitation Following Stroke: A Review.
    Warutkar V; Dadgal R; Mangulkar UR
    Cureus; 2022 Nov; 14(11):e31075. PubMed ID: 36475123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Wearable Lower Limb Exoskeleton: Reducing the Energy Cost of Human Movement.
    Tang X; Wang X; Ji X; Zhou Y; Yang J; Wei Y; Zhang W
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Upper limb soft robotic wearable devices: a systematic review.
    Bardi E; Gandolla M; Braghin F; Resta F; Pedrocchi ALG; Ambrosini E
    J Neuroeng Rehabil; 2022 Aug; 19(1):87. PubMed ID: 35948915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Innovative Metaheuristic Optimization Approach with a Bi-Triad for Rehabilitation Exoskeletons.
    Sosa Méndez D; García Cena CE; Bedolla-Martínez D; Martín González A
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. User satisfaction with lower limb wearable robotic exoskeletons.
    Poritz JMP; Taylor HB; Francisco G; Chang SH
    Disabil Rehabil Assist Technol; 2020 Apr; 15(3):322-327. PubMed ID: 30786789
    [No Abstract]   [Full Text] [Related]  

  • 34. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: a systematic review.
    Lefeber N; Swinnen E; Kerckhofs E
    Disabil Rehabil Assist Technol; 2017 Oct; 12(7):657-671. PubMed ID: 27762641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance Evaluation of Lower Limb Exoskeletons: A Systematic Review.
    Pinto-Fernandez D; Torricelli D; Sanchez-Villamanan MDC; Aller F; Mombaur K; Conti R; Vitiello N; Moreno JC; Pons JL
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1573-1583. PubMed ID: 32634096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using workspace restrictiveness for adaptive velocity adjustment of assistive robots and upper limb exoskeletons.
    Mohammadi M; Cardoso ASS; Andreasen Struijk LNS
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-Compliance Printing Techniques for the Fabrication of Customisable Hand Exoskeletons.
    Sarwar W; Harwin W; Janko B; Bell G
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():488-493. PubMed ID: 31374677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a "transparent operation mode" for a lower-limb exoskeleton designed for children with cerebral palsy.
    Andrade RM; Sapienza S; Bonato P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():512-517. PubMed ID: 31374681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review.
    Molteni F; Gasperini G; Cannaviello G; Guanziroli E
    PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.