BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 34254686)

  • 1. RNA polymerase II speed: a key player in controlling and adapting transcriptome composition.
    Muniz L; Nicolas E; Trouche D
    EMBO J; 2021 Aug; 40(15):e105740. PubMed ID: 34254686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the importance of being co-transcriptional.
    Neugebauer KM
    J Cell Sci; 2002 Oct; 115(Pt 20):3865-71. PubMed ID: 12244124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast.
    Wilhelm BT; Marguerat S; Aligianni S; Codlin S; Watt S; Bähler J
    Genome Biol; 2011 Aug; 12(8):R82. PubMed ID: 21859475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.
    Le Martelot G; Canella D; Symul L; Migliavacca E; Gilardi F; Liechti R; Martin O; Harshman K; Delorenzi M; Desvergne B; Herr W; Deplancke B; Schibler U; Rougemont J; Guex N; Hernandez N; Naef F;
    PLoS Biol; 2012; 10(11):e1001442. PubMed ID: 23209382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteasome inhibition creates a chromatin landscape favorable to RNA Pol II processivity.
    Kinyamu HK; Bennett BD; Bushel PR; Archer TK
    J Biol Chem; 2020 Jan; 295(5):1271-1287. PubMed ID: 31806706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing.
    Brody Y; Neufeld N; Bieberstein N; Causse SZ; Böhnlein EM; Neugebauer KM; Darzacq X; Shav-Tal Y
    PLoS Biol; 2011 Jan; 9(1):e1000573. PubMed ID: 21264352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA polymerase II pausing downstream of core histone genes is different from genes producing polyadenylated transcripts.
    Anamika K; Gyenis À; Poidevin L; Poch O; Tora L
    PLoS One; 2012; 7(6):e38769. PubMed ID: 22701709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PTEN modulates gene transcription by redistributing genome-wide RNA polymerase II occupancy.
    Abbas A; Padmanabhan R; Romigh T; Eng C
    Hum Mol Genet; 2019 Sep; 28(17):2826-2834. PubMed ID: 31127935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing.
    Saldi T; Riemondy K; Erickson B; Bentley DL
    Mol Cell; 2021 Apr; 81(8):1789-1801.e5. PubMed ID: 33631106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Herpes Simplex Virus 1 Dramatically Alters Loading and Positioning of RNA Polymerase II on Host Genes Early in Infection.
    Birkenheuer CH; Danko CG; Baines JD
    J Virol; 2018 Apr; 92(8):. PubMed ID: 29437966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic reorganization of the AC16 cardiomyocyte transcriptome in response to TNFα signaling revealed by integrated genomic analyses.
    Luo X; Chae M; Krishnakumar R; Danko CG; Kraus WL
    BMC Genomics; 2014 Feb; 15():155. PubMed ID: 24564208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-transcriptional regulation of alternative pre-mRNA splicing.
    Shukla S; Oberdoerffer S
    Biochim Biophys Acta; 2012 Jul; 1819(7):673-83. PubMed ID: 22326677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts.
    Sousa-Luís R; Dujardin G; Zukher I; Kimura H; Weldon C; Carmo-Fonseca M; Proudfoot NJ; Nojima T
    Mol Cell; 2021 May; 81(9):1935-1950.e6. PubMed ID: 33735606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The RNA polymerase II transcriptional machinery and its epigenetic context.
    Barrero MJ; Malik S
    Subcell Biochem; 2013; 61():237-59. PubMed ID: 23150254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compromised RNA polymerase III complex assembly leads to local alterations of intergenic RNA polymerase II transcription in Saccharomyces cerevisiae.
    Wang Q; Nowak CM; Korde A; Oh DH; Dassanayake M; Donze D
    BMC Biol; 2014 Oct; 12():89. PubMed ID: 25348158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA Targets Ribogenesis Factor WDR43 to Chromatin for Transcription and Pluripotency Control.
    Bi X; Xu Y; Li T; Li X; Li W; Shao W; Wang K; Zhan G; Wu Z; Liu W; Lu JY; Wang L; Zhao J; Wu J; Na J; Li G; Li P; Shen X
    Mol Cell; 2019 Jul; 75(1):102-116.e9. PubMed ID: 31128943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of RNA Polymerase II pause in eumetazoans: Insights from
    Reddy PC; Pradhan SJ; Karmodiya K; Galande S
    J Biosci; 2020; 45():. PubMed ID: 31965986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear distribution of RNA polymerase II in human oocytes from antral follicles: dynamics relative to the transcriptional state and association with splicing factors.
    Parfenov VN; Davis DS; Pochukalina GN; Kostyuchek D; Murti KG
    J Cell Biochem; 2000 Apr; 77(4):654-65. PubMed ID: 10771521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation.
    Ip JY; Schmidt D; Pan Q; Ramani AK; Fraser AG; Odom DT; Blencowe BJ
    Genome Res; 2011 Mar; 21(3):390-401. PubMed ID: 21163941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noncoding RNAs Set the Stage for RNA Polymerase II Transcription.
    Studniarek C; Egloff S; Murphy S
    Trends Genet; 2021 Mar; 37(3):279-291. PubMed ID: 33046273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.