These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34254835)

  • 21. All in a sniff: olfaction as a model for active sensing.
    Wachowiak M
    Neuron; 2011 Sep; 71(6):962-73. PubMed ID: 21943596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioelectronic noses: a status report. Part I.
    Göpel W; Ziegler C; Breer H; Schild D; Apfelbach R; Joerges J; Malaka R
    Biosens Bioelectron; 1998 Mar; 13(3-4):479-93. PubMed ID: 9642779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream.
    Gliem S; Syed AS; Sansone A; Kludt E; Tantalaki E; Hassenklöver T; Korsching SI; Manzini I
    Cell Mol Life Sci; 2013 Jun; 70(11):1965-84. PubMed ID: 23269434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical reception in vertebrate olfaction: evidence for multiple transduction pathways.
    Morales B; Bacigalupo J
    Biol Res; 1996; 29(3):333-41. PubMed ID: 9278705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish.
    Friedrich RW; Laurent G
    J Neurophysiol; 2004 Jun; 91(6):2658-69. PubMed ID: 14960561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats.
    Samuelsen CL; Fontanini A
    J Neurosci; 2017 Jan; 37(2):244-257. PubMed ID: 28077705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo modulation of sensory input to the olfactory bulb by tonic and activity-dependent presynaptic inhibition of receptor neurons.
    Pírez N; Wachowiak M
    J Neurosci; 2008 Jun; 28(25):6360-71. PubMed ID: 18562606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterizing complex chemosensors: information-theoretic analysis of olfactory systems.
    Alkasab TK; Bozza TC; Cleland TA; Dorries KM; Pearce TC; White J; Kauer JS
    Trends Neurosci; 1999 Mar; 22(3):102-8. PubMed ID: 10199633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective loss of cholinergic neurons projecting to the olfactory system increases perceptual generalization between similar, but not dissimilar, odorants.
    Linster C; Garcia PA; Hasselmo ME; Baxter MG
    Behav Neurosci; 2001 Aug; 115(4):826-33. PubMed ID: 11508721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. History-Dependent Odor Processing in the Mouse Olfactory Bulb.
    Vinograd A; Livneh Y; Mizrahi A
    J Neurosci; 2017 Dec; 37(49):12018-12030. PubMed ID: 29109236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synaptic adaptation and odor-background segmentation.
    Linster C; Henry L; Kadohisa M; Wilson DA
    Neurobiol Learn Mem; 2007 Mar; 87(3):352-60. PubMed ID: 17141533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal Dynamics of Inhalation-Linked Activity across Defined Subpopulations of Mouse Olfactory Bulb Neurons Imaged
    Short SM; Wachowiak M
    eNeuro; 2019; 6(3):. PubMed ID: 31209151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parallel processing of social signals by the mammalian main and accessory olfactory systems.
    Spehr M; Spehr J; Ukhanov K; Kelliher KR; Leinders-Zufall T; Zufall F
    Cell Mol Life Sci; 2006 Jul; 63(13):1476-84. PubMed ID: 16732428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanosensory-Based Phase Coding of Odor Identity in the Olfactory Bulb.
    Iwata R; Kiyonari H; Imai T
    Neuron; 2017 Dec; 96(5):1139-1152.e7. PubMed ID: 29216451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imaging and coding in the olfactory system.
    Kauer JS; White J
    Annu Rev Neurosci; 2001; 24():963-79. PubMed ID: 11520924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recovery of glomerular morphology in the olfactory bulb of young mice after disruption caused by continuous odorant exposure.
    Monjaraz-Fuentes F; Millán-Adalco D; Palomero-Rivero M; Hudson R; Drucker-Colín R
    Brain Res; 2017 Sep; 1670():6-13. PubMed ID: 28583862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning-Dependent and -Independent Enhancement of Mitral/Tufted Cell Glomerular Odor Responses Following Olfactory Fear Conditioning in Awake Mice.
    Ross JM; Fletcher ML
    J Neurosci; 2018 May; 38(20):4623-4640. PubMed ID: 29669746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scenting Waldo: analyzing olfactory scenes.
    Holy TE
    Nat Neurosci; 2014 Sep; 17(9):1144-5. PubMed ID: 25157510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural sensitivity to odorants in deprived and normal olfactory bulbs.
    Rodríguez FB; Huerta R; Aylwin Mde L
    PLoS One; 2013; 8(4):e60745. PubMed ID: 23580211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coding odor identity and odor value in awake rodents.
    Nunez-Parra A; Li A; Restrepo D
    Prog Brain Res; 2014; 208():205-22. PubMed ID: 24767484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.