These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34255206)

  • 1. Multicontrast MRI-based radiomics for the prediction of pathological complete response to neoadjuvant chemotherapy in patients with early triple negative breast cancer.
    Nemeth A; Chaudet P; Leporq B; Heudel PE; Barabas F; Tredan O; Treilleux I; Coulon A; Pilleul F; Beuf O
    MAGMA; 2021 Dec; 34(6):833-844. PubMed ID: 34255206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI.
    Braman NM; Etesami M; Prasanna P; Dubchuk C; Gilmore H; Tiwari P; Plecha D; Madabhushi A
    Breast Cancer Res; 2017 May; 19(1):57. PubMed ID: 28521821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer.
    Li X; Li C; Wang H; Jiang L; Chen M
    PeerJ; 2024; 12():e17683. PubMed ID: 39026540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy.
    Ma M; Gan L; Liu Y; Jiang Y; Xin L; Liu Y; Qin N; Cheng Y; Liu Q; Xu L; Zhang Y; Wang X; Zhang X; Ye J; Wang X
    Eur J Radiol; 2022 Jan; 146():110095. PubMed ID: 34890936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer.
    Eun NL; Kang D; Son EJ; Park JS; Youk JH; Kim JA; Gweon HM
    Radiology; 2020 Jan; 294(1):31-41. PubMed ID: 31769740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using radiomics of pretreatment dynamic contrast-enhanced MRI.
    Yoshida K; Kawashima H; Kannon T; Tajima A; Ohno N; Terada K; Takamatsu A; Adachi H; Ohno M; Miyati T; Ishikawa S; Ikeda H; Gabata T
    Magn Reson Imaging; 2022 Oct; 92():19-25. PubMed ID: 35636571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set.
    Cain EH; Saha A; Harowicz MR; Marks JR; Marcom PK; Mazurowski MA
    Breast Cancer Res Treat; 2019 Jan; 173(2):455-463. PubMed ID: 30328048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI Radiomics for Assessment of Molecular Subtype, Pathological Complete Response, and Residual Cancer Burden in Breast Cancer Patients Treated With Neoadjuvant Chemotherapy.
    Choudhery S; Gomez-Cardona D; Favazza CP; Hoskin TL; Haddad TC; Goetz MP; Boughey JC
    Acad Radiol; 2022 Jan; 29 Suppl 1(Suppl 1):S145-S154. PubMed ID: 33160859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Texture analysis using machine learning-based 3-T magnetic resonance imaging for predicting recurrence in breast cancer patients treated with neoadjuvant chemotherapy.
    Eun NL; Kang D; Son EJ; Youk JH; Kim JA; Gweon HM
    Eur Radiol; 2021 Sep; 31(9):6916-6928. PubMed ID: 33693994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiomics Based on Dynamic Contrast-Enhanced MRI to Early Predict Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Therapy.
    Zeng Q; Ke M; Zhong L; Zhou Y; Zhu X; He C; Liu L
    Acad Radiol; 2023 Aug; 30(8):1638-1647. PubMed ID: 36564256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy.
    Sutton EJ; Onishi N; Fehr DA; Dashevsky BZ; Sadinski M; Pinker K; Martinez DF; Brogi E; Braunstein L; Razavi P; El-Tamer M; Sacchini V; Deasy JO; Morris EA; Veeraraghavan H
    Breast Cancer Res; 2020 May; 22(1):57. PubMed ID: 32466777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the added value of pretherapeutic MR descriptors in predicting breast cancer pathologic complete response to neoadjuvant chemotherapy.
    Malhaire C; Selhane F; Saint-Martin MJ; Cockenpot V; Akl P; Laas E; Bellesoeur A; Ala Eddine C; Bereby-Kahane M; Manceau J; Sebbag-Sfez D; Pierga JY; Reyal F; Vincent-Salomon A; Brisse H; Frouin F
    Eur Radiol; 2023 Nov; 33(11):8142-8154. PubMed ID: 37318605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal co-clinical radiomics: Sensitivity of radiomic features to tumour volume, image noise and resolution in co-clinical T1-weighted and T2-weighted magnetic resonance imaging.
    Roy S; Whitehead TD; Quirk JD; Salter A; Ademuyiwa FO; Li S; An H; Shoghi KI
    EBioMedicine; 2020 Sep; 59():102963. PubMed ID: 32891051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Noninvasive Tool Based on Magnetic Resonance Imaging Radiomics for the Preoperative Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer.
    Li C; Lu N; He Z; Tan Y; Liu Y; Chen Y; Wu Z; Liu J; Ren W; Mao L; Yu Y; Xie C; Yao H
    Ann Surg Oncol; 2022 Nov; 29(12):7685-7693. PubMed ID: 35773561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Features from Computerized Texture Analysis of Breast Cancers at Pretreatment MR Imaging Are Associated with Response to Neoadjuvant Chemotherapy.
    Chamming's F; Ueno Y; Ferré R; Kao E; Jannot AS; Chong J; Omeroglu A; Mesurolle B; Reinhold C; Gallix B
    Radiology; 2018 Feb; 286(2):412-420. PubMed ID: 28980886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of early clinical response to neoadjuvant chemotherapy in Triple-negative breast cancer: Incorporating Radiomics through breast MRI.
    Lee HJ; Lee JH; Lee JE; Na YM; Park MH; Lee JS; Lim HS
    Sci Rep; 2024 Sep; 14(1):21691. PubMed ID: 39289507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of peritumoral vascular and intratumoral radiomics to predict pathologic complete responses to neoadjuvant chemotherapy in patients with triple-negative breast cancer.
    Xie T; Gong J; Zhao Q; Wu C; Wu S; Peng W; Gu Y
    BMC Med Imaging; 2024 Jun; 24(1):136. PubMed ID: 38844842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiparametric MRI-based radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer.
    Mohamed RM; Panthi B; Adrada BE; Boge M; Candelaria RP; Chen H; Guirguis MS; Hunt KK; Huo L; Hwang KP; Korkut A; Litton JK; Moseley TW; Pashapoor S; Patel MM; Reed B; Scoggins ME; Son JB; Thompson A; Tripathy D; Valero V; Wei P; White J; Whitman GJ; Xu Z; Yang W; Yam C; Ma J; Rauch GM
    Sci Rep; 2024 Jul; 14(1):16073. PubMed ID: 38992094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.