These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 34255257)

  • 1. Fluorescein Based Fluorescence Sensors for the Selective Sensing of Various Analytes.
    S K; Sam B; George L; N SY; Varghese A
    J Fluoresc; 2021 Sep; 31(5):1251-1276. PubMed ID: 34255257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review on Recent Development of Phenothiazine-Based Chromogenic and Fluorogenic Sensors for the Detection of Cations, Anions, and Neutral Analytes.
    Ilakiyalakshmi M; Dhanasekaran K; Napoleon AA
    Top Curr Chem (Cham); 2024 Sep; 382(3):29. PubMed ID: 39237745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors.
    Zheng H; Zhan XQ; Bian QN; Zhang XJ
    Chem Commun (Camb); 2013 Jan; 49(5):429-47. PubMed ID: 23164947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenium- and tellurium-containing fluorescent molecular probes for the detection of biologically important analytes.
    Manjare ST; Kim Y; Churchill DG
    Acc Chem Res; 2014 Oct; 47(10):2985-98. PubMed ID: 25248146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Study of Small Molecule-Based Rhodamine-Derived Chemosensors and their Implications in Environmental and Biological Systems from 2012 to 2021: Latest Advancement and Future Prospects.
    Lalitha R; Velmathi S
    J Fluoresc; 2024 Jan; 34(1):15-118. PubMed ID: 37212978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction of Hg(2+) and trivalent ions with two new fluorescein bio-inspired dual colorimetric/fluorimetric probes.
    Gonçalves AC; Pilla V; Oliveira E; Santos SM; Capelo JL; Dos Santos AA; Lodeiro C
    Dalton Trans; 2016 Jun; 45(23):9513-22. PubMed ID: 27193690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Schiff Bases: A Versatile Fluorescence Probe in Sensing Cations.
    Kumari N; Singh S; Baral M; Kanungo BK
    J Fluoresc; 2023 May; 33(3):859-893. PubMed ID: 36633727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nano sensor for sensitive and selective detection of Cu
    Mahajan PG; Dige NC; Vanjare BD; Eo SH; Kim SJ; Lee KH
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():105-116. PubMed ID: 30884349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pd
    Zhang YS; Balamurugan R; Lin JC; Fitriyani S; Liu JH; Emelyanenko A
    Analyst; 2017 May; 142(9):1536-1544. PubMed ID: 28368059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel "turn-on" thiooxofluorescein-based colorimetric and fluorescent sensor for Hg
    Feng Y; Kuai Z; Song Y; Guo J; Yang Q; Shan Y; Li Y
    Talanta; 2017 Aug; 170():103-110. PubMed ID: 28501145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-mode chemosensor for the fluorescence detection of zinc and hypochlorite on a fluorescein backbone and its cell-imaging applications.
    Maity S; Maity AC; Das AK; Bhattacharyya N
    Anal Methods; 2022 Jul; 14(28):2739-2744. PubMed ID: 35775440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trihydroxytrioxatriangulene--an extended fluorescein and a ratiometric pH sensor.
    Westerlund F; Hildebrandt CB; Sørensen TJ; Laursen BW
    Chemistry; 2010 Mar; 16(10):2992-6. PubMed ID: 20146272
    [No Abstract]   [Full Text] [Related]  

  • 13. Fluorescein Tri-Aldehyde Promotes the Selective Detection of Homocysteine.
    Barve A; Lowry M; Escobedo JO; Thainashmuthu J; Strongin RM
    J Fluoresc; 2016 Mar; 26(2):731-7. PubMed ID: 26780767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [3.3]Ferrocenophanes with guanidine bridging units as multisignalling receptor molecules for selective recognition of anions, cations, and amino acids.
    Otón F; Espinosa A; Tárraga A; de Arellano CR; Molina P
    Chemistry; 2007; 13(20):5742-52. PubMed ID: 17444547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single- and multiphoton turn-on fluorescent Fe(3+) sensors based on bis(rhodamine).
    Weerasinghe AJ; Schmiesing C; Varaganti S; Ramakrishna G; Sinn E
    J Phys Chem B; 2010 Jul; 114(29):9413-9. PubMed ID: 20604504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of highly selective fluorescent ferrocenyl-iminopyridine chemosensor for biologically relevant Fe
    Sharma H; Singh V; Tamrakar A; Nigam KK; Pandey MD; Tiwari KK; Pandey R
    Luminescence; 2023 Jul; 38(7):1132-1138. PubMed ID: 35362235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two Schiff-base fluorescent sensors for selective sensing of aluminum (III): Experimental and computational studies.
    Qin JC; Cheng XY; Fang R; Wang MF; Yang ZY; Li TR; Li Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():352-7. PubMed ID: 26232579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced response speed and selectivity of fluorescein-based H
    Lv J; Wang F; Qiang J; Ren X; Chen Y; Zhang Z; Wang Y; Zhang W; Chen X
    Biosens Bioelectron; 2017 Jan; 87():96-100. PubMed ID: 27522482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Fluorescence Probe toward Cu
    Leng X; Wang D; Mi Z; Zhang Y; Yang B; Chen F
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new selective fluorogenic probe for trivalent cations.
    Barba-Bon A; Costero AM; Gil S; Parra M; Soto J; Martínez-Máñez R; Sancenón F
    Chem Commun (Camb); 2012 Mar; 48(24):3000-2. PubMed ID: 22318503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.