These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34255635)

  • 1. Data-Driven Adaptive Disturbance Observers for Model-Free Trajectory Tracking Control of Maritime Autonomous Surface Ships.
    Peng Z; Wang D; Wang J
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5584-5594. PubMed ID: 34255635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trajectory exponential tracking control of unmanned surface ships with external disturbance and system uncertainties.
    Qu Y; Xiao B; Fu Z; Yuan D
    ISA Trans; 2018 Jul; 78():47-55. PubMed ID: 29921420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Output-Feedback Flocking Control of Multiple Autonomous Surface Vehicles Based on Data-Driven Adaptive Extended State Observers.
    Peng Z; Liu L; Wang J
    IEEE Trans Cybern; 2021 Sep; 51(9):4611-4622. PubMed ID: 32816683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Neural Backstepping Sliding Mode Heading Control for Underactuated Ships with Drift Angle and Ship-Bank Interaction.
    Han X
    Comput Intell Neurosci; 2020; 2020():8854055. PubMed ID: 33082777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SMC-based model-free tracking control of unknown autonomous surface vehicles.
    Weng Y; Wang N
    ISA Trans; 2022 Nov; 130():684-691. PubMed ID: 36123191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive disturbance rejection for course tracking of marine vessels under actuator constraint.
    Hu X; Wei X; Han J; Zhang Q
    ISA Trans; 2020 May; 100():82-91. PubMed ID: 31784046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive disturbance cancellation for a class of MIMO nonlinear Euler-Lagrange systems under input saturation.
    Li J; Du J
    ISA Trans; 2020 Jan; 96():14-23. PubMed ID: 31421802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of Dynamic Positioning System with Disturbance Observer for Autonomous Marine Surface Vessels.
    Tomera M; Podgórski K
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive control with unknown mass estimation for a quadrotor-slung-load system.
    Yu G; Xie W; Cabecinhas D; Cunha R; Silvestre C
    ISA Trans; 2023 Feb; 133():412-423. PubMed ID: 35811162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Neural Control of Underactuated Surface Vessels With Prescribed Performance Guarantees.
    Dai SL; He S; Wang M; Yuan C
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3686-3698. PubMed ID: 30418926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedforward-feedback-enhanced model-free adaptive iterative learning control with measurement disturbance and data dropout for an autonomous bus trajectory tracking system.
    Liu S; Huang W; Ren Y; Wang L; Ji H
    Sci Prog; 2024; 107(1):368504241229560. PubMed ID: 38494178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collision-free automatic berthing of maritime autonomous surface ships via safety-certified active disturbance rejection control.
    Liu H; Peng Z; Gu N; Wang H; Liu L; Wang D
    ISA Trans; 2024 May; 148():24-31. PubMed ID: 38514286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data-driven trajectory tracking control for autonomous underwater vehicle based on iterative extended state observer.
    Wu C; Dai Y; Shan L; Zhu Z; Wu Z
    Math Biosci Eng; 2022 Jan; 19(3):3036-3055. PubMed ID: 35240819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking Design of an Uncertain Autonomous Underwater Vehicle with Input Saturations by Adaptive Regression Matrix-Based Fixed-Time Control.
    Wu HM
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid finite-time trajectory tracking control of a quadrotor.
    Wang N; Deng Q; Xie G; Pan X
    ISA Trans; 2019 Jul; 90():278-286. PubMed ID: 30736957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise trajectory tracking of a piezoactuator-driven stage using an adaptive backstepping control scheme.
    Shieh HJ; Hsu CH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Apr; 54(4):705-14. PubMed ID: 17441580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observer-based backstepping control method using reduced lateral dynamics for autonomous lane-keeping system.
    Kang CM; Kim W; Chung CC
    ISA Trans; 2018 Dec; 83():214-226. PubMed ID: 30292400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decision-Making for the Autonomous Navigation of Maritime Autonomous Surface Ships Based on Scene Division and Deep Reinforcement Learning.
    Zhang X; Wang C; Liu Y; Chen X
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distributed model-free formation control of networked fully-actuated autonomous surface vehicles.
    Niu X; Gao S; Xu Z; Feng S
    Front Neurorobot; 2022; 16():1028656. PubMed ID: 36247356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Anti-Disturbance Control for Systems With Saturating Input via Dynamic Neural Network Disturbance Modeling.
    Yi Y; Zheng WX; Liu B
    IEEE Trans Cybern; 2022 Jun; 52(6):5290-5300. PubMed ID: 33232251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.