These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
581 related articles for article (PubMed ID: 34255697)
41. Automatic knowledge extraction from Chinese electronic medical records and rheumatoid arthritis knowledge graph construction. Liu F; Liu M; Li M; Xin Y; Gao D; Wu J; Zhu J Quant Imaging Med Surg; 2023 Jun; 13(6):3873-3890. PubMed ID: 37284084 [TBL] [Abstract][Full Text] [Related]
42. Named entity recognition of Chinese electronic medical records based on a hybrid neural network and medical MC-BERT. Chen P; Zhang M; Yu X; Li S BMC Med Inform Decis Mak; 2022 Dec; 22(1):315. PubMed ID: 36457119 [TBL] [Abstract][Full Text] [Related]
43. Automatic text classification of actionable radiology reports of tinnitus patients using bidirectional encoder representations from transformer (BERT) and in-domain pre-training (IDPT). Li J; Lin Y; Zhao P; Liu W; Cai L; Sun J; Zhao L; Yang Z; Song H; Lv H; Wang Z BMC Med Inform Decis Mak; 2022 Jul; 22(1):200. PubMed ID: 35907966 [TBL] [Abstract][Full Text] [Related]
44. Identifying and Predicting Intentional Self-Harm in Electronic Health Record Clinical Notes: Deep Learning Approach. Obeid JS; Dahne J; Christensen S; Howard S; Crawford T; Frey LJ; Stecker T; Bunnell BE JMIR Med Inform; 2020 Jul; 8(7):e17784. PubMed ID: 32729840 [TBL] [Abstract][Full Text] [Related]
45. Automatic Extraction of Lung Cancer Staging Information From Computed Tomography Reports: Deep Learning Approach. Hu D; Zhang H; Li S; Wang Y; Wu N; Lu X JMIR Med Inform; 2021 Jul; 9(7):e27955. PubMed ID: 34287213 [TBL] [Abstract][Full Text] [Related]
46. Depression Risk Prediction for Chinese Microblogs via Deep-Learning Methods: Content Analysis. Wang X; Chen S; Li T; Li W; Zhou Y; Zheng J; Chen Q; Yan J; Tang B JMIR Med Inform; 2020 Jul; 8(7):e17958. PubMed ID: 32723719 [TBL] [Abstract][Full Text] [Related]
47. BERT-Based Neural Network for Inpatient Fall Detection From Electronic Medical Records: Retrospective Cohort Study. Cheligeer C; Wu G; Lee S; Pan J; Southern DA; Martin EA; Sapiro N; Eastwood CA; Quan H; Xu Y JMIR Med Inform; 2024 Jan; 12():e48995. PubMed ID: 38289643 [TBL] [Abstract][Full Text] [Related]
48. Identification of patients' smoking status using an explainable AI approach: a Danish electronic health records case study. Ebrahimi A; Henriksen MBH; Brasen CL; Hilberg O; Hansen TF; Jensen LH; Peimankar A; Wiil UK BMC Med Res Methodol; 2024 May; 24(1):114. PubMed ID: 38760718 [TBL] [Abstract][Full Text] [Related]
49. Multi-Level Representation Learning for Chinese Medical Entity Recognition: Model Development and Validation. Zhang Z; Zhu L; Yu P JMIR Med Inform; 2020 May; 8(5):e17637. PubMed ID: 32364514 [TBL] [Abstract][Full Text] [Related]
50. Traditional Chinese medicine clinical records classification with BERT and domain specific corpora. Yao L; Jin Z; Mao C; Zhang Y; Luo Y J Am Med Inform Assoc; 2019 Dec; 26(12):1632-1636. PubMed ID: 31550356 [TBL] [Abstract][Full Text] [Related]
51. Construction of a Multi-Label Classifier for Extracting Multiple Incident Factors From Medication Incident Reports in Residential Care Facilities: Natural Language Processing Approach. Kizaki H; Satoh H; Ebara S; Watabe S; Sawada Y; Imai S; Hori S JMIR Med Inform; 2024 Jul; 12():e58141. PubMed ID: 39042454 [TBL] [Abstract][Full Text] [Related]
52. RadBERT: Adapting Transformer-based Language Models to Radiology. Yan A; McAuley J; Lu X; Du J; Chang EY; Gentili A; Hsu CN Radiol Artif Intell; 2022 Jul; 4(4):e210258. PubMed ID: 35923376 [TBL] [Abstract][Full Text] [Related]
53. The Impact of Pretrained Language Models on Negation and Speculation Detection in Cross-Lingual Medical Text: Comparative Study. Rivera Zavala R; Martinez P JMIR Med Inform; 2020 Dec; 8(12):e18953. PubMed ID: 33270027 [TBL] [Abstract][Full Text] [Related]
54. Disease Concept-Embedding Based on the Self-Supervised Method for Medical Information Extraction from Electronic Health Records and Disease Retrieval: Algorithm Development and Validation Study. Chen YP; Lo YH; Lai F; Huang CH J Med Internet Res; 2021 Jan; 23(1):e25113. PubMed ID: 33502324 [TBL] [Abstract][Full Text] [Related]
55. Disambiguating Clinical Abbreviations Using a One-Fits-All Classifier Based on Deep Learning Techniques. Jaber A; MartÃnez P Methods Inf Med; 2022 Jun; 61(S 01):e28-e34. PubMed ID: 35104909 [TBL] [Abstract][Full Text] [Related]
56. Automatic International Classification of Diseases Coding System: Deep Contextualized Language Model With Rule-Based Approaches. Chen PF; Chen KC; Liao WC; Lai F; He TL; Lin SC; Chen WJ; Yang CY; Lin YC; Tsai IC; Chiu CH; Chang SC; Hung FM JMIR Med Inform; 2022 Jun; 10(6):e37557. PubMed ID: 35767353 [TBL] [Abstract][Full Text] [Related]
57. Evaluation of a prototype machine learning tool to semi-automate data extraction for systematic literature reviews. Panayi A; Ward K; Benhadji-Schaff A; Ibanez-Lopez AS; Xia A; Barzilay R Syst Rev; 2023 Oct; 12(1):187. PubMed ID: 37803451 [TBL] [Abstract][Full Text] [Related]
58. Predicting Glaucoma Progression Requiring Surgery Using Clinical Free-Text Notes and Transfer Learning With Transformers. Hu W; Wang SY Transl Vis Sci Technol; 2022 Mar; 11(3):37. PubMed ID: 35353148 [TBL] [Abstract][Full Text] [Related]
59. Extraction of Information Related to Adverse Drug Events from Electronic Health Record Notes: Design of an End-to-End Model Based on Deep Learning. Li F; Liu W; Yu H JMIR Med Inform; 2018 Nov; 6(4):e12159. PubMed ID: 30478023 [TBL] [Abstract][Full Text] [Related]
60. Deep learning approaches for extracting adverse events and indications of dietary supplements from clinical text. Fan Y; Zhou S; Li Y; Zhang R J Am Med Inform Assoc; 2021 Mar; 28(3):569-577. PubMed ID: 33150942 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]