These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34255784)

  • 1. Learning epistatic gene interactions from perturbation screens.
    Elmes K; Schmich F; Szczurek E; Jenkins J; Beerenwinkel N; Gavryushkin A
    PLoS One; 2021; 16(7):e0254491. PubMed ID: 34255784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning genetic epistasis using Bayesian network scoring criteria.
    Jiang X; Neapolitan RE; Barmada MM; Visweswaran S
    BMC Bioinformatics; 2011 Mar; 12():89. PubMed ID: 21453508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilitating Anti-Cancer Combinatorial Drug Discovery by Targeting Epistatic Disease Genes.
    Quan Y; Liu MY; Liu YM; Zhu LD; Wu YS; Luo ZH; Zhang XZ; Xu SZ; Yang QY; Zhang HY
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29570606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits.
    Crawford L; Zeng P; Mukherjee S; Zhou X
    PLoS Genet; 2017 Jul; 13(7):e1006869. PubMed ID: 28746338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast lasso-based method for inferring higher-order interactions.
    Elmes K; Heywood A; Huang Z; Gavryushkin A
    PLoS Comput Biol; 2022 Dec; 18(12):e1010730. PubMed ID: 36580499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved functional overview of protein complexes using inferred epistatic relationships.
    Ryan C; Greene D; Guénolé A; van Attikum H; Krogan NJ; Cunningham P; Cagney G
    BMC Syst Biol; 2011 May; 5():80. PubMed ID: 21605386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting purely epistatic multi-locus interactions by an omnibus permutation test on ensembles of two-locus analyses.
    Wongseree W; Assawamakin A; Piroonratana T; Sinsomros S; Limwongse C; Chaiyaratana N
    BMC Bioinformatics; 2009 Sep; 10():294. PubMed ID: 19761607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved pathway reconstruction from RNA interference screens by exploiting off-target effects.
    Srivatsa S; Kuipers J; Schmich F; Eicher S; Emmenlauer M; Dehio C; Beerenwinkel N
    Bioinformatics; 2018 Jul; 34(13):i519-i527. PubMed ID: 29950000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS.
    Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CINOEDV: a co-information based method for detecting and visualizing n-order epistatic interactions.
    Shang J; Sun Y; Liu JX; Xia J; Zhang J; Zheng CH
    BMC Bioinformatics; 2016 May; 17(1):214. PubMed ID: 27184783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using information interaction to discover epistatic effects in complex diseases.
    Anunciação O; Vinga S; Oliveira AL
    PLoS One; 2013; 8(10):e76300. PubMed ID: 24194833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring modulators of genetic interactions with epistatic nested effects models.
    Pirkl M; Diekmann M; van der Wees M; Beerenwinkel N; Fröhlich H; Markowetz F
    PLoS Comput Biol; 2017 Apr; 13(4):e1005496. PubMed ID: 28406896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature-Inspired Multiobjective Epistasis Elucidation from Genome-Wide Association Studies.
    Li X; Zhang S; Wong KC
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):226-237. PubMed ID: 29994485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic studies of complex human diseases: characterizing SNP-disease associations using Bayesian networks.
    Han B; Chen XW; Talebizadeh Z; Xu H
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S14. PubMed ID: 23281790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Emili A
    Methods Mol Biol; 2011; 781():99-126. PubMed ID: 21877280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epistatic interaction maps relative to multiple metabolic phenotypes.
    Snitkin ES; Segrè D
    PLoS Genet; 2011 Feb; 7(2):e1001294. PubMed ID: 21347328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs.
    Lee S; Xing EP
    Bioinformatics; 2012 Jun; 28(12):i137-46. PubMed ID: 22689753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epistasis analysis of microRNAs on pathological stages in colon cancer based on an Empirical Bayesian Elastic Net method.
    Wen J; Quitadamo A; Hall B; Shi X
    BMC Genomics; 2017 Oct; 18(Suppl 7):756. PubMed ID: 29513198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.