BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 34255841)

  • 1. L2, a chloroplast metalloproteinase, regulates fruit ripening by participating in ethylene autocatalysis under the control of ethylene response factors.
    Li G; Wang J; Zhang C; Ai G; Zhang D; Wei J; Cai L; Li C; Zhu W; Larkin RM; Zhang J
    J Exp Bot; 2021 Oct; 72(20):7035-7048. PubMed ID: 34255841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chimeric repressor version of an Ethylene Response Factor (ERF) family member, Sl-ERF.B3, shows contrasting effects on tomato fruit ripening.
    Liu M; Diretto G; Pirrello J; Roustan JP; Li Z; Giuliano G; Regad F; Bouzayen M
    New Phytol; 2014 Jul; 203(1):206-18. PubMed ID: 24645853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered chloroplast development and delayed fruit ripening caused by mutations in a zinc metalloprotease at the lutescent2 locus of tomato.
    Barry CS; Aldridge GM; Herzog G; Ma Q; McQuinn RP; Hirschberg J; Giovannoni JJ
    Plant Physiol; 2012 Jul; 159(3):1086-98. PubMed ID: 22623517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased ACS Enzyme Dosage Causes Initiation of Climacteric Ethylene Production in Tomato.
    Chen H; Bai S; Kusano M; Ezura H; Wang N
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene response factor ERF.D7 activates auxin response factor 2 paralogs to regulate tomato fruit ripening.
    Gambhir P; Singh V; Parida A; Raghuvanshi U; Kumar R; Sharma AK
    Plant Physiol; 2022 Nov; 190(4):2775-2796. PubMed ID: 36130295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of ethylene pathway components in non-climacteric capsicum.
    Aizat WM; Able JA; Stangoulis JC; Able AJ
    BMC Plant Biol; 2013 Nov; 13():191. PubMed ID: 24286334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening.
    Gao Y; Wei W; Fan Z; Zhao X; Zhang Y; Jing Y; Zhu B; Zhu H; Shan W; Chen J; Grierson D; Luo Y; Jemrić T; Jiang CZ; Fu DQ
    J Exp Bot; 2020 Jun; 71(12):3560-3574. PubMed ID: 32338291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive genome-wide analysis of calmodulin-binding transcription activator (CAMTA) in Durio zibethinus and identification of fruit ripening-associated DzCAMTAs.
    Iqbal Z; Iqbal MS; Sangpong L; Khaksar G; Sirikantaramas S; Buaboocha T
    BMC Genomics; 2021 Oct; 22(1):743. PubMed ID: 34649525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription.
    Li T; Jiang Z; Zhang L; Tan D; Wei Y; Yuan H; Li T; Wang A
    Plant J; 2016 Dec; 88(5):735-748. PubMed ID: 27476697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hybrid non-ethylene and ethylene ripening response in kiwifruit (Actinidia chinensis) is associated with differential regulation of MADS-box transcription factors.
    McAtee PA; Richardson AC; Nieuwenhuizen NJ; Gunaseelan K; Hoong L; Chen X; Atkinson RG; Burdon JN; David KM; Schaffer RJ
    BMC Plant Biol; 2015 Dec; 15():304. PubMed ID: 26714876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line.
    Atkinson RG; Gunaseelan K; Wang MY; Luo L; Wang T; Norling CL; Johnston SL; Maddumage R; Schröder R; Schaffer RJ
    J Exp Bot; 2011 Jul; 62(11):3821-35. PubMed ID: 21511911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a tomato mutant constructed with reverse genetics to study fruit ripening, a complex developmental process.
    Theologis A; Oeller PW; Wong LM; Rottmann WH; Gantz DM
    Dev Genet; 1993; 14(4):282-95. PubMed ID: 8222344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of EIL and ERF Genes Related to Fruit Ripening in Peach.
    Zhou H; Zhao L; Yang Q; Amar MH; Ogutu C; Peng Q; Liao L; Zhang J; Han Y
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32325835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auxin-activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening.
    Yue P; Lu Q; Liu Z; Lv T; Li X; Bu H; Liu W; Xu Y; Yuan H; Wang A
    New Phytol; 2020 Jun; 226(6):1781-1795. PubMed ID: 32083754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ambiguous ripening nature of the fig (Ficus carica L.) fruit: a gene-expression study of potential ripening regulators and ethylene-related genes.
    Freiman ZE; Rosianskey Y; Dasmohapatra R; Kamara I; Flaishman MA
    J Exp Bot; 2015 Jun; 66(11):3309-24. PubMed ID: 25956879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcript analyses of ethylene pathway genes during ripening of Chinese jujube fruit.
    Zhang Z; Huang J; Li X
    J Plant Physiol; 2018; 224-225():1-10. PubMed ID: 29574324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches.
    Trainotti L; Tadiello A; Casadoro G
    J Exp Bot; 2007; 58(12):3299-308. PubMed ID: 17925301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome-wide identification and expression profiling of the ERF gene family suggest roles as transcriptional activators and repressors of fruit ripening in durian.
    Khaksar G; Sirikantaramas S
    PLoS One; 2021; 16(8):e0252367. PubMed ID: 34375337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 gene editing uncovers the roles of CONSTITUTIVE TRIPLE RESPONSE 1 and REPRESSOR OF SILENCING 1 in melon fruit ripening and epigenetic regulation.
    Giordano A; Santo Domingo M; Quadrana L; Pujol M; Martín-Hernández AM; Garcia-Mas J
    J Exp Bot; 2022 Jun; 73(12):4022-4033. PubMed ID: 35394503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light, Ethylene and Auxin Signaling Interaction Regulates Carotenoid Biosynthesis During Tomato Fruit Ripening.
    Cruz AB; Bianchetti RE; Alves FRR; Purgatto E; Peres LEP; Rossi M; Freschi L
    Front Plant Sci; 2018; 9():1370. PubMed ID: 30279694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.