BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34256362)

  • 1. Efficient bipedal locomotion on rough terrain via compliant ankle actuation with energy regulation.
    Kerimoglu D; Karkoub M; Ismail U; Morgul O; Saranli U
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34256362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the analysis and control of a bipedal legged locomotion model via partial feedback linearization.
    Hamzaçebi H; Uyanik I; Morgul O
    Bioinspir Biomim; 2024 Jun; ():. PubMed ID: 38936396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing and designing a leg shape to increase robustness of a running robot on rough terrain.
    Gaathon A; Degani A
    Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36270611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking.
    Sun S; Huang Y; Wang Q
    J Theor Biol; 2016 Jan; 388():108-18. PubMed ID: 26519906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Running over unknown rough terrain with a one-legged planar robot.
    Andrews B; Miller B; Schmitt J; Clark JE
    Bioinspir Biomim; 2011 Jun; 6(2):026009. PubMed ID: 21555844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.
    Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ
    Front Robot AI; 2018; 5():67. PubMed ID: 33500946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BirdBot achieves energy-efficient gait with minimal control using avian-inspired leg clutching.
    Badri-Spröwitz A; Aghamaleki Sarvestani A; Sitti M; Daley MA
    Sci Robot; 2022 Mar; 7(64):eabg4055. PubMed ID: 35294220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and control of biped robot with variable stiffness ankle joints.
    Lin Z; Zang X; Zhang X; Liu Y; Heng S
    Technol Health Care; 2020; 28(S1):453-462. PubMed ID: 32364178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-like compliant locomotion: state of the art of robotic implementations.
    Torricelli D; Gonzalez J; Weckx M; Jiménez-Fabián R; Vanderborght B; Sartori M; Dosen S; Farina D; Lefeber D; Pons JL
    Bioinspir Biomim; 2016 Aug; 11(5):051002. PubMed ID: 27545108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dog galloping on rough terrain exhibits similar limb co-ordination patterns and gait variability to that on flat terrain.
    Wilshin S; Reeve MA; Spence AJ
    Bioinspir Biomim; 2021 Mar; 16(1):015001. PubMed ID: 33684074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flight-phase terrain following control strategy for stable and robust hopping of a one-legged robot under large terrain variations.
    Shemer N; Degani A
    Bioinspir Biomim; 2017 Aug; 12(4):046011. PubMed ID: 28524066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and experimental study on a compliant flipper-leg during terrestrial locomotion.
    Fang T; Zhou Y; Li S; Xu M; Liang H; Li W; Zhang S
    Bioinspir Biomim; 2016 Aug; 11(5):056005. PubMed ID: 27530372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-inspired design and validation of the Efficient Lockable Spring Ankle (ELSA) prosthesis.
    Heremans F; Vijayakumar S; Bouri M; Dehez B; Ronsse R
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():411-416. PubMed ID: 31374664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Centipede Walking via Synergetic Coupling Between Decentralized Control and Flexible Body Dynamics.
    Yasui K; Takano S; Kano T; Ishiguro A
    Front Robot AI; 2022; 9():797566. PubMed ID: 35450166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jumping robots: a biomimetic solution to locomotion across rough terrain.
    Armour R; Paskins K; Bowyer A; Vincent J; Megill W; Bomphrey R
    Bioinspir Biomim; 2007 Sep; 2(3):S65-82. PubMed ID: 17848786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Agility of Running Birds: Sensorimotor and Mechanical Factors in Avian Bipedal Locomotion.
    Daley MA
    Integr Comp Biol; 2018 Nov; 58(5):884-893. PubMed ID: 29897448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BigDog-inspired studies in the locomotion of goats and dogs.
    Lee DV; Biewener AA
    Integr Comp Biol; 2011 Jul; 51(1):190-202. PubMed ID: 21659392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired preactivation reflex increases robustness of walking on rough terrain.
    Bunz EK; Haeufle DFB; Remy CD; Schmitt S
    Sci Rep; 2023 Aug; 13(1):13219. PubMed ID: 37580375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Overview on Principles for Energy Efficient Robot Locomotion.
    Kashiri N; Abate A; Abram SJ; Albu-Schaffer A; Clary PJ; Daley M; Faraji S; Furnemont R; Garabini M; Geyer H; Grabowski AM; Hurst J; Malzahn J; Mathijssen G; Remy D; Roozing W; Shahbazi M; Simha SN; Song JB; Smit-Anseeuw N; Stramigioli S; Vanderborght B; Yesilevskiy Y; Tsagarakis N
    Front Robot AI; 2018; 5():129. PubMed ID: 33501007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.