BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34256362)

  • 21. Stable and Fast Planar Jumping Control Design for a Compliant One-Legged Robot.
    Luo G; Du R; Song S; Yuan H; Huang Z; Zhou H; Gu J
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots.
    Hao Q; Wang Z; Wang J; Chen G
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soft tissue vibration: a biologically-inspired mechanism for stabilizing bipedal locomotion.
    Masters SE; Challis JH
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33352541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Body-terrain interaction affects large bump traversal of insects and legged robots.
    Gart SW; Li C
    Bioinspir Biomim; 2018 Feb; 13(2):026005. PubMed ID: 29394159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective locomotion at multiple stride frequencies using proprioceptive feedback on a legged microrobot.
    Doshi N; Jayaram K; Castellanos S; Kuindersma S; Wood RJ
    Bioinspir Biomim; 2019 Jul; 14(5):056001. PubMed ID: 31189140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Confidence in the curve: Establishing instantaneous cost mapping techniques using bilateral ankle exoskeletons.
    Koller JR; Gates DH; Ferris DP; Remy CD
    J Appl Physiol (1985); 2017 Feb; 122(2):242-252. PubMed ID: 27856717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning robust autonomous navigation and locomotion for wheeled-legged robots.
    Lee J; Bjelonic M; Reske A; Wellhausen L; Miki T; Hutter M
    Sci Robot; 2024 Apr; 9(89):eadi9641. PubMed ID: 38657088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anisotropic compliance of robot legs improves recovery from swing-phase collisions.
    Chang H; Chang J; Clifton G; Gravish N
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34130262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinematics of lower limbs during walking are emulated by springy walking model with a compliantly connected, off-centered curvy foot.
    Lim H; Park S
    J Biomech; 2018 Apr; 71():119-126. PubMed ID: 29456169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biarticular elements as a contributor to energy efficiency: biomechanical review and application in bio-inspired robotics.
    Junius K; Moltedo M; Cherelle P; Rodriguez-Guerrero C; Vanderborght B; Lefeber D
    Bioinspir Biomim; 2017 Nov; 12(6):061001. PubMed ID: 28718780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots.
    Drama Ö; Badri-Spröwitz A
    Bioinspir Biomim; 2020 Mar; 15(3):036013. PubMed ID: 32052793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Human-assistive Robotic Platform with Quadrupedal Locomotion
    Shen T; Afsar MR; Haque MR; McClain E; Meek S; Shen X
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():305-310. PubMed ID: 31374647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Minimally Actuated Walking: Identifying Core Challenges to Economical Legged Locomotion Reveals Novel Solutions.
    Schroeder RT; Bertram JE
    Front Robot AI; 2018; 5():58. PubMed ID: 33644120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A general locomotion control framework for multi-legged locomotors.
    Chong B; O Aydin Y; Rieser JM; Sartoretti G; Wang T; Whitman J; Kaba A; Aydin E; McFarland C; Diaz Cruz K; Rankin JW; Michel KB; Nicieza A; Hutchinson JR; Choset H; Goldman DI
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35533656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Torque Curve Optimization of Ankle Push-Off in Walking Bipedal Robots Using Genetic Algorithm.
    Ji Q; Qian Z; Ren L; Ren L
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain.
    Li C; Pullin AO; Haldane DW; Lam HK; Fearing RS; Full RJ
    Bioinspir Biomim; 2015 Jun; 10(4):046003. PubMed ID: 26098002
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Running over rough terrain reveals limb control for intrinsic stability.
    Daley MA; Biewener AA
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15681-6. PubMed ID: 17032779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A robotic leg inspired from an insect leg.
    Tran-Ngoc PT; Lim LZ; Gan JH; Wang H; Vo-Doan TT; Sato H
    Bioinspir Biomim; 2022 Aug; 17(5):. PubMed ID: 35700723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.