BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 34256470)

  • 1. [Comparison of the accuracy of intraocular lens power calculation formulas based on the new swept-source optical coherence tomography biometry].
    Deng XH; Chang PJ; Huang JH; Wang DD; Zhao YY; Ding XX; Zhao YE
    Zhonghua Yan Ke Za Zhi; 2021 Jul; 57(7):502-511. PubMed ID: 34256470
    [No Abstract]   [Full Text] [Related]  

  • 2. Accuracy of intraocular lens calculation formulas in cataract patients with steep corneal curvature.
    Zhang C; Dai G; Pazo EE; Xu L; Wu X; Zhang H; Lin T; He W
    PLoS One; 2020; 15(11):e0241630. PubMed ID: 33216749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algorithmic intraocular lens power calculation formula selection by keratometry, anterior chamber depth and axial length.
    Kim JW; Eom Y; Yoon EG; Choi Y; Song JS; Jeong JW; Park SK; Kim HM
    Acta Ophthalmol; 2022 May; 100(3):e701-e709. PubMed ID: 34378871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraocular lens power calculation in eyes with keratoconus.
    Savini G; Abbate R; Hoffer KJ; Mularoni A; Imburgia A; Avoni L; D'Eliseo D; Schiano-Lomoriello D
    J Cataract Refract Surg; 2019 May; 45(5):576-581. PubMed ID: 30799180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of ocular biometric factors on the accuracy of various IOL power calculation formulas.
    Jeong J; Song H; Lee JK; Chuck RS; Kwon JW
    BMC Ophthalmol; 2017 May; 17(1):62. PubMed ID: 28464806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Lens Vault on the Accuracy of Intraocular Lens Calculation Formulas in Shallow Anterior Chamber Eyes.
    Yan C; Yao K
    Am J Ophthalmol; 2022 Jan; 233():57-67. PubMed ID: 34293335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraocular lens power calculation in eyes with extreme myopia: Comparison of Barrett Universal II, Haigis, and Olsen formulas.
    Rong X; He W; Zhu Q; Qian D; Lu Y; Zhu X
    J Cataract Refract Surg; 2019 Jun; 45(6):732-737. PubMed ID: 30876784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of formula accuracy for intraocular lens power calculation based on measurements by a swept-source optical coherence tomography optical biometer.
    Savini G; Hoffer KJ; Balducci N; Barboni P; Schiano-Lomoriello D
    J Cataract Refract Surg; 2020 Jan; 46(1):27-33. PubMed ID: 32050229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of anterior chamber depth on the choice of intraocular lens calculation formula in patients with normal axial length.
    Miraftab M; Hashemi H; Fotouhi A; Khabazkhoob M; Rezvan F; Asgari S
    Middle East Afr J Ophthalmol; 2014; 21(4):307-11. PubMed ID: 25371635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of intraocular lens power calculation in primary angle-closure disease: comparison of 7 formulas.
    Hou M; Ding Y; Liu L; Li J; Liu X; Wu M
    Graefes Arch Clin Exp Ophthalmol; 2021 Dec; 259(12):3739-3747. PubMed ID: 34258655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraocular lens power calculation for plus and minus lenses in high myopia using partial coherence interferometry.
    Fuest M; Plange N; Kuerten D; Schellhase H; Mazinani BAE; Walter P; Kohnen S; Widder RA; Roessler G
    Int Ophthalmol; 2021 May; 41(5):1585-1592. PubMed ID: 33521894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anterior chamber depth, lens thickness and intraocular lens calculation formula accuracy: nine formulas comparison.
    Hipólito-Fernandes D; Luís ME; Serras-Pereira R; Gil P; Maduro V; Feijão J; Alves N
    Br J Ophthalmol; 2022 Mar; 106(3):349-355. PubMed ID: 33229347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refractive Predictability Using the IOLMaster 700 and Artificial Intelligence-Based IOL Power Formulas Compared to Standard Formulas.
    Cheng H; Kane JX; Liu L; Li J; Cheng B; Wu M
    J Refract Surg; 2020 Jul; 36(7):466-472. PubMed ID: 32644169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of new-generation intraocular lens calculation formulas in eyes with variations in predicted refraction.
    Chang P; Qian S; Wang Y; Li S; Yang F; Hu Y; Liu Z; Zhao YE
    Graefes Arch Clin Exp Ophthalmol; 2023 Jan; 261(1):127-135. PubMed ID: 35802204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower refractive prediction accuracy of total keratometry using intraocular lens formulas loaded onto a swept-source optical biometer.
    Danjo Y; Ohji R; Maeno S
    Graefes Arch Clin Exp Ophthalmol; 2023 Jan; 261(1):137-146. PubMed ID: 35881200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Accuracy of 6 Intraocular Lens Power Calculation Formulas in Elongated Eyes, According to Anterior Chamber Depth.
    Mo E; Lin L; Wang J; Huo Q; Yang Q; Liu E; Zhang L; Yu Y; Ye L; Pan A; Li J
    Am J Ophthalmol; 2022 Jan; 233():153-162. PubMed ID: 34303685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of anterior chamber depth on the choice of intraocular lens calculation formula.
    Yang S; Whang WJ; Joo CK
    PLoS One; 2017; 12(12):e0189868. PubMed ID: 29253884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of intraocular lens power calculation formulas in patients with a history of acute primary angle-closure attack.
    Kim NH; Gim Y; Choi KR; Suh W; Jun RM; Han KE
    BMC Ophthalmol; 2023 Nov; 23(1):482. PubMed ID: 38001418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of the Kane Formula for Intraocular Lens Power Calculation in Comparison with Existing Formulas: A Retrospective Review.
    Ryu S; Jun I; Kim TI; Kim EK; Seo KY
    Yonsei Med J; 2021 Dec; 62(12):1117-1124. PubMed ID: 34816642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of six methods for the intraocular lens power calculation in high myopic eyes.
    Ji J; Liu Y; Zhang J; Wu X; Shao W; Ma B; Luo M
    Eur J Ophthalmol; 2021 Jan; 31(1):96-102. PubMed ID: 31744328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.