These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 34257432)

  • 1. Ligand binding at the protein-lipid interface: strategic considerations for drug design.
    Payandeh J; Volgraf M
    Nat Rev Drug Discov; 2021 Sep; 20(9):710-722. PubMed ID: 34257432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does the Lipid Bilayer Orchestrate Access and Binding of Ligands to Transmembrane Orthosteric/Allosteric Sites of G Protein-Coupled Receptors?
    Szlenk CT; Gc JB; Natesan S
    Mol Pharmacol; 2019 Nov; 96(5):527-541. PubMed ID: 30967440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration properties of ligands and drugs in protein binding sites: tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies.
    García-Sosa AT
    J Chem Inf Model; 2013 Jun; 53(6):1388-405. PubMed ID: 23662606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-Phospholipid Conjugation: A Versatile Strategy for Developing Long-Acting Ligands That Bind to Membrane Proteins by Restricting the Subcellular Localization of the Ligand.
    Kawamura S; Ito Y; Hirokawa T; Hikiyama E; Yamada S; Shuto S
    J Med Chem; 2018 May; 61(9):4020-4029. PubMed ID: 29652494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural properties of non-traditional drug targets present new challenges for virtual screening.
    Gowthaman R; Deeds EJ; Karanicolas J
    J Chem Inf Model; 2013 Aug; 53(8):2073-81. PubMed ID: 23879197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors.
    Gruber CW; Muttenthaler M; Freissmuth M
    Curr Pharm Des; 2010; 16(28):3071-88. PubMed ID: 20687879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design.
    Kooistra AJ; Kuhne S; de Esch IJ; Leurs R; de Graaf C
    Br J Pharmacol; 2013 Sep; 170(1):101-26. PubMed ID: 23713847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of SF-1 bound by different phospholipids: evidence for regulatory ligands.
    Sablin EP; Blind RD; Krylova IN; Ingraham JG; Cai F; Williams JD; Fletterick RJ; Ingraham HA
    Mol Endocrinol; 2009 Jan; 23(1):25-34. PubMed ID: 18988706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From G Protein-coupled Receptor Structure Resolution to Rational Drug Design.
    Jazayeri A; Dias JM; Marshall FH
    J Biol Chem; 2015 Aug; 290(32):19489-95. PubMed ID: 26100628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of recombinant rat liver fatty acid-binding protein to small anionic phospholipid vesicles results in ligand release: a model for interfacial binding and fatty acid targeting.
    Davies JK; Thumser AE; Wilton DC
    Biochemistry; 1999 Dec; 38(51):16932-40. PubMed ID: 10606528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational method to identify druggable binding sites that target protein-protein interactions.
    Li H; Kasam V; Tautermann CS; Seeliger D; Vaidehi N
    J Chem Inf Model; 2014 May; 54(5):1391-400. PubMed ID: 24762202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additional binding sites for anionic phospholipids and calcium ions in the crystal structures of complexes of the C2 domain of protein kinase calpha.
    Ochoa WF; Corbalán-Garcia S; Eritja R; Rodríguez-Alfaro JA; Gómez-Fernández JC; Fita I; Verdaguer N
    J Mol Biol; 2002 Jul; 320(2):277-91. PubMed ID: 12079385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From drug target to leads--sketching a physicochemical pathway for lead molecule design in silico.
    Shaikh SA; Jain T; Sandhu G; Latha N; Jayaram B
    Curr Pharm Des; 2007; 13(34):3454-70. PubMed ID: 18220783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding the Molecular Effects of Atovaquone Linked Resistant Mutations on
    Chebon-Bore L; Sanyanga TA; Manyumwa CV; Khairallah A; Tastan Bishop Ö
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of a novel small molecule ligand bound to the CXCL12 chemokine.
    Smith EW; Liu Y; Getschman AE; Peterson FC; Ziarek JJ; Li R; Volkman BF; Chen Y
    J Med Chem; 2014 Nov; 57(22):9693-9. PubMed ID: 25356720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Mechanism by which Cobra Venom Cardiotoxins Interact with the Outer Mitochondrial Membrane.
    Li F; Shrivastava IH; Hanlon P; Dagda RK; Gasanoff ES
    Toxins (Basel); 2020 Jun; 12(7):. PubMed ID: 32605112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of an isolated p110α subunit of PI3Kα permits crystallization and provides a platform for structure-based drug design.
    Chen P; Deng YL; Bergqvist S; Falk MD; Liu W; Timofeevski S; Brooun A
    Protein Sci; 2014 Oct; 23(10):1332-40. PubMed ID: 25043846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of lipids and ligands with nicotinic acetylcholine receptor vesicles assessed by electron paramagnetic resonance spectroscopy.
    Arias HR
    Methods Mol Biol; 2010; 606():291-318. PubMed ID: 20013404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel approaches for targeting the adenosine A2A receptor.
    Yuan G; Gedeon NG; Jankins TC; Jones GB
    Expert Opin Drug Discov; 2015 Jan; 10(1):63-80. PubMed ID: 25311639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.