These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34257892)

  • 1. Trapped interfacial redox introduces reversibility in the oxygen reduction reaction in a non-aqueous Ca
    Lu YT; Neale AR; Hu CC; Hardwick LJ
    Chem Sci; 2021 Jul; 12(25):8909-8919. PubMed ID: 34257892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Oxygen Reduction Reaction in Ca
    Bawol PP; Reinsberg PH; Koellisch-Mirbach A; Bondue CJ; Baltruschat H
    ChemSusChem; 2021 Jan; 14(1):428-440. PubMed ID: 32865298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Reduction of O
    Köllisch-Mirbach A; Park I; Hegemann M; Thome E; Baltruschat H
    ChemSusChem; 2021 Jun; 14(12):2564-2575. PubMed ID: 33881219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of alkali-metal cation on oxygen adsorption at Pt single-crystal electrodes in non-aqueous electrolytes.
    Fernández-Vidal J; Hardwick LJ; Cabello G; Attard GA
    Faraday Discuss; 2024 Jan; 248(0):102-118. PubMed ID: 37753622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Additives on the Reversible Oxygen Reduction Reaction/Oxygen Evolution Reaction in the Mg
    Eckardt M; Alwast D; Schnaidt J; Behm RJ
    ChemSusChem; 2020 Aug; 13(15):3919-3927. PubMed ID: 32315492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrochemically reversible lattice with redox active A-sites of double perovskite oxide nanosheets to reinforce oxygen electrocatalysis.
    Majee R; Islam QA; Mondal S; Bhattacharyya S
    Chem Sci; 2020 Sep; 11(37):10180-10189. PubMed ID: 34094282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic Behavior of Lithium Nitrate in Li-O2 Cells.
    Sharon D; Hirsberg D; Afri M; Chesneau F; Lavi R; Frimer AA; Sun YK; Aurbach D
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16590-600. PubMed ID: 26158598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Use of Spray-Dried Mn₃O₄/C Composites as Electrocatalysts for Li-O₂ Batteries.
    Yang HK; Chin CC; Chen JS
    Nanomaterials (Basel); 2016 Nov; 6(11):. PubMed ID: 28335331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into Electrochemical Oxidation of NaO
    Morasch R; Kwabi DG; Tulodziecki M; Risch M; Zhang S; Shao-Horn Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4374-4381. PubMed ID: 28173703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operando observation of the gold-electrolyte interface in Li-O2 batteries.
    Gittleson FS; Ryu WH; Taylor AD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A QCM study of ORR-OER and an in situ study of a redox mediator in DMSO for Li-O2 batteries.
    Schaltin S; Vanhoutte G; Wu M; Bardé F; Fransaer J
    Phys Chem Chem Phys; 2015 May; 17(19):12575-86. PubMed ID: 25898788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new thin layer cell for battery related DEMS-experiments: the activity of redox mediators in the Li-O
    Bawol PP; Reinsberg P; Bondue CJ; Abd-El-Latif AA; Königshoven P; Baltruschat H
    Phys Chem Chem Phys; 2018 Aug; 20(33):21447-21456. PubMed ID: 30087964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ni- and Mn-Promoted Mesoporous Co3O4: A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity for Oxygen Reduction Reaction and Oxygen Evolution Reaction.
    Song W; Ren Z; Chen SY; Meng Y; Biswas S; Nandi P; Elsen HA; Gao PX; Suib SL
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20802-13. PubMed ID: 27458646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interrogation of the Reaction Mechanism in a Na-O
    Han S; Cai C; Yang F; Zhu Y; Sun Q; Zhu YG; Li H; Wang H; Shao-Horn Y; Sun X; Gu M
    ACS Nano; 2020 Mar; 14(3):3669-3677. PubMed ID: 32129983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting Neutral Water Oxidation through Surface Oxygen Modulation.
    Zhang L; Wang L; Wen Y; Ni F; Zhang B; Peng H
    Adv Mater; 2020 Aug; 32(31):e2002297. PubMed ID: 32584508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unveiling the Electrolyte Cations Dependent Kinetics on CoOOH-Catalyzed Oxygen Evolution Reaction.
    Jia H; Yao N; Yu C; Cong H; Luo W
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202313886. PubMed ID: 37864480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Ion Diffusion on the Lithium-Oxygen Electrochemical Process and Battery Application Using Carbon Nanotubes-Graphene Substrate.
    Levchenko S; Marangon V; Bellani S; Pasquale L; Bonaccorso F; Pellegrini V; Hassoun J
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39218-39233. PubMed ID: 37552158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte.
    Wen R; Hong M; Byon HR
    J Am Chem Soc; 2013 Jul; 135(29):10870-6. PubMed ID: 23808397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.