These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 34258155)

  • 41. Yttrium-Sodium Halides as Promising Solid-State Electrolytes with High Ionic Conductivity and Stability for Na-Ion Batteries.
    Qie Y; Wang S; Fu S; Xie H; Sun Q; Jena P
    J Phys Chem Lett; 2020 May; 11(9):3376-3383. PubMed ID: 32282213
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent Progress in Electrolytes for Zn-Air Batteries.
    Chen P; Zhang K; Tang D; Liu W; Meng F; Huang Q; Liu J
    Front Chem; 2020; 8():372. PubMed ID: 32528925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spectroscopic and Computational Study of Boronium Ionic Liquids and Electrolytes.
    Clarke-Hannaford J; Breedon M; Rüther T; Johansson P; Spencer MJS
    Chemistry; 2021 Sep; 27(50):12826-12834. PubMed ID: 34272779
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Competitive Solvation of Ternary Eutectic Electrolytes Tailoring the Electrode/Electrolyte Interphase for Lithium Metal Batteries.
    Wu W; Liang Y; Li D; Bo Y; Wu D; Ci L; Li M; Zhang J
    ACS Nano; 2022 Sep; 16(9):14558-14568. PubMed ID: 36040142
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries.
    Xu J; Dou Y; Wei Z; Ma J; Deng Y; Li Y; Liu H; Dou S
    Adv Sci (Weinh); 2017 Oct; 4(10):1700146. PubMed ID: 29051856
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Organic Electrolyte Design for Rechargeable Batteries: From Lithium to Magnesium.
    Zhang H; Qiao L; Armand M
    Angew Chem Int Ed Engl; 2022 Dec; 61(52):e202214054. PubMed ID: 36219515
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of graphene aerogels in rechargeable batteries.
    Sultanov F; Tatykayev B; Bakenov Z; Mentbayeva A
    Adv Colloid Interface Sci; 2024 Jul; 331():103249. PubMed ID: 39032342
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ionic Liquid-Based Electrolytes for Sodium-Ion Batteries: Tuning Properties To Enhance the Electrochemical Performance of Manganese-Based Layered Oxide Cathode.
    Chagas LG; Jeong S; Hasa I; Passerini S
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22278-22289. PubMed ID: 31144802
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lithium Salt Catalyzed Ring-Opening Polymerized Solid-State Electrolyte with Comparable Ionic Conductivity and Better Interface Compatibility for Li-Ion Batteries.
    Zhang W; Yoon S; Jin L; Lim H; Jeon M; Jang H; Ahmed F; Kim W
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323805
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Research development on electrolytes for magnesium-ion batteries.
    Man Y; Jaumaux P; Xu Y; Fei Y; Mo X; Wang G; Zhou X
    Sci Bull (Beijing); 2023 Aug; 68(16):1819-1842. PubMed ID: 37516661
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Towards K-Ion and Na-Ion Batteries as "Beyond Li-Ion".
    Kubota K; Dahbi M; Hosaka T; Kumakura S; Komaba S
    Chem Rec; 2018 Apr; 18(4):459-479. PubMed ID: 29442429
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hybrid Li/Na Ion Batteries: Temperature-Induced Reactivity of Three-Layered Oxide (
    Kalapsazova M; Kostov K; Zhecheva E; Stoyanova R
    Front Chem; 2020; 8():600140. PubMed ID: 33330392
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Water-in-Salt Gel Biopolymer Electrolytes for Flexible and Wearable Zn/Alkali Metal Dual-Ion Batteries.
    Kasprzak D; Wu Z; Tao L; Xu J; Zhang Y; Liu J
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36304-36314. PubMed ID: 38935891
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antiperovskite Electrolytes for Solid-State Batteries.
    Xia W; Zhao Y; Zhao F; Adair K; Zhao R; Li S; Zou R; Zhao Y; Sun X
    Chem Rev; 2022 Feb; 122(3):3763-3819. PubMed ID: 35015520
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sodium Ion Batteries using Ionic Liquids as Electrolytes.
    Hagiwara R; Matsumoto K; Hwang J; Nohira T
    Chem Rec; 2019 Apr; 19(4):758-770. PubMed ID: 30480364
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-Charge Density Polymerized Ionic Networks Boosting High Ionic Conductivity as Quasi-Solid Electrolytes for High-Voltage Batteries.
    Tian X; Yi Y; Yang P; Liu P; Qu L; Li M; Hu YS; Yang B
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4001-4010. PubMed ID: 30608130
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent Development of Mg Ion Solid Electrolyte.
    Zhan Y; Zhang W; Lei B; Liu H; Li W
    Front Chem; 2020; 8():125. PubMed ID: 32158746
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polyethylene Oxide-Based Composites as Solid-State Polymer Electrolytes for Lithium Metal Batteries: A Mini Review.
    Zhao S; Wu Q; Ma W; Yang L
    Front Chem; 2020; 8():640. PubMed ID: 32850656
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Single-Ion Conducting Borate Network Polymer as a Viable Quasi-Solid Electrolyte for Lithium Metal Batteries.
    Shin DM; Bachman JE; Taylor MK; Kamcev J; Park JG; Ziebel ME; Velasquez E; Jarenwattananon NN; Sethi GK; Cui Y; Long JR
    Adv Mater; 2020 Mar; 32(10):e1905771. PubMed ID: 31985110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.