These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34258166)

  • 1. Manipulation and Mixing of 200 Femtoliter Droplets in Nanofluidic Channels Using MHz-Order Surface Acoustic Waves.
    Zhang N; Horesh A; Friend J
    Adv Sci (Weinh); 2021 Jul; 8(13):2100408. PubMed ID: 34258166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Nanoheight Channels Incorporating Surface Acoustic Wave Actuation via Lithium Niobate for Acoustic Nanofluidics.
    Zhang N; Friend J
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics.
    Chen C; Zhang SP; Mao Z; Nama N; Gu Y; Huang PH; Jing Y; Guo X; Costanzo F; Huang TJ
    Lab Chip; 2018 Dec; 18(23):3645-3654. PubMed ID: 30361727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance.
    Ali M; Park J
    Ultrason Sonochem; 2023 Feb; 93():106305. PubMed ID: 36706667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic on-demand droplet merging using surface acoustic waves.
    Sesen M; Alan T; Neild A
    Lab Chip; 2014 Sep; 14(17):3325-33. PubMed ID: 24972001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Massively Multiplexed Submicron Particle Patterning in Acoustically Driven Oscillating Nanocavities.
    Tayebi M; O'Rorke R; Wong HC; Low HY; Han J; Collins DJ; Ai Y
    Small; 2020 Apr; 16(17):e2000462. PubMed ID: 32196142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications.
    Connacher W; Zhang N; Huang A; Mei J; Zhang S; Gopesh T; Friend J
    Lab Chip; 2018 Jul; 18(14):1952-1996. PubMed ID: 29922774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully Microfabricated Surface Acoustic Wave Tweezer for Collection of Submicron Particles and Human Blood Cells.
    Fakhfouri A; Colditz M; Devendran C; Ivanova K; Jacob S; Neild A; Winkler A
    ACS Appl Mater Interfaces; 2023 May; 15(20):24023-24033. PubMed ID: 37188328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustofluidic black holes for multifunctional in-droplet particle manipulation.
    Liu P; Tian Z; Yang K; Naquin TD; Hao N; Huang H; Chen J; Ma Q; Bachman H; Zhang P; Xu X; Hu J; Huang TJ
    Sci Adv; 2022 Apr; 8(13):eabm2592. PubMed ID: 35363512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contactless acoustic tweezer for droplet manipulation on superhydrophobic surfaces.
    Luo T; Liu S; Zhou R; Zhang C; Chen D; Zhan Y; Hu Q; He X; Xie Y; Huan Z; Gao W; Li R; Yuan G; Wang Y; Zhou W
    Lab Chip; 2023 Sep; 23(18):3989-4001. PubMed ID: 37565337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface acoustic wave-based generation and transfer of droplets onto wettable substrates.
    Nampoothiri KN; Satpathi NS; Sen AK
    RSC Adv; 2022 Aug; 12(36):23400-23410. PubMed ID: 36090390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves.
    Liu Y; Yin Q; Luo Y; Huang Z; Cheng Q; Zhang W; Zhou B; Zhou Y; Ma Z
    Ultrason Sonochem; 2023 Jun; 96():106441. PubMed ID: 37216791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MHz-Order Surface Acoustic Wave Thruster for Underwater Silent Propulsion.
    Zhang N; Wen Y; Friend J
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32316135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Surface Acoustic Wave Devices on Lithium Niobate.
    Mei J; Zhang N; Friend J
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast microfluidics using surface acoustic waves.
    Yeo LY; Friend JR
    Biomicrofluidics; 2009 Jan; 3(1):12002. PubMed ID: 19693383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary-based, multifunctional manipulation of particles and fluids
    Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ
    J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect.
    Lee J; Jeong JS; Shung KK
    Ultrasonics; 2013 Jan; 53(1):249-54. PubMed ID: 22824623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.