These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. Trapping of Aqueous Droplets under Surface Acoustic Wave-Driven Streaming in Oil-Filled Microwells. Nath A; Sudeepthi A; Sen AK Langmuir; 2022 Apr; 38(15):4763-4773. PubMed ID: 35395155 [TBL] [Abstract][Full Text] [Related]
28. Enhanced Detection in Droplet Microfluidics by Acoustic Vortex Modulation of Particle Rings and Particle Clusters via Asymmetric Propagation of Surface Acoustic Waves. Liu Y; Ji M; Yu N; Zhao C; Xue G; Fu W; Qiao X; Zhang Y; Chou X; Geng W Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735547 [TBL] [Abstract][Full Text] [Related]
29. Acoustic fields and microfluidic patterning around embedded micro-structures subject to surface acoustic waves. Collins DJ; O'Rorke R; Neild A; Han J; Ai Y Soft Matter; 2019 Nov; 15(43):8691-8705. PubMed ID: 31657435 [TBL] [Abstract][Full Text] [Related]
30. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles. Huang J; Ren X; Zhou Q; Zhou J; Xu Z Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963 [TBL] [Abstract][Full Text] [Related]
32. Selective Sparse Sampling of Water Droplets in Oil with Acoustic Tweezers. Lin S; Riaud A; Zhou J ACS Sens; 2024 Apr; 9(4):2066-2074. PubMed ID: 38627252 [TBL] [Abstract][Full Text] [Related]
33. Dielectrowetting manipulation for digital microfluidics: creating, transporting, splitting, and merging of droplets. Geng H; Feng J; Stabryla LM; Cho SK Lab Chip; 2017 Mar; 17(6):1060-1068. PubMed ID: 28217772 [TBL] [Abstract][Full Text] [Related]
34. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system. Tan YC; Lee AP Lab Chip; 2005 Oct; 5(10):1178-83. PubMed ID: 16175277 [TBL] [Abstract][Full Text] [Related]
35. In-droplet microparticle separation using travelling surface acoustic wave. Park K; Park J; Jung JH; Destgeer G; Ahmed H; Sung HJ Biomicrofluidics; 2017 Nov; 11(6):064112. PubMed ID: 29308101 [TBL] [Abstract][Full Text] [Related]
36. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers. Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714 [TBL] [Abstract][Full Text] [Related]
37. Acoustic streaming of microparticles using graphene-based interdigital transducers. MiĊĦeikis V; Shilton RJ; Travagliati M; Agostini M; Cecchini M; Piazza V; Coletti C Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34030151 [TBL] [Abstract][Full Text] [Related]
38. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271 [TBL] [Abstract][Full Text] [Related]
39. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Wang Z; Zhe J Lab Chip; 2011 Apr; 11(7):1280-5. PubMed ID: 21301739 [TBL] [Abstract][Full Text] [Related]
40. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation. Zhou Y Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]