These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34258166)

  • 41. A review of nanofluidic patents.
    Dutta P; Morse J
    Recent Pat Nanotechnol; 2008; 2(3):150-9. PubMed ID: 19076049
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Linear theory on temporal instability of megahertz faraday waves for monodisperse microdroplet ejection.
    Tsai SC; Tsai CS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1746-55. PubMed ID: 25004544
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acoustic Droplet Vaporization of Perfluorohexane Emulsions Induced by Heterogeneous Nucleation at an Ultrasonic Frequency of 1.1 MHz.
    Ramesh R; Thimonier C; Desgranges S; Faugeras V; Coulouvrat F; Laurent J; Marrelec G; Contino-Pépin C; Urbach W; Tribet C; Taulier N
    Langmuir; 2023 Nov; 39(44):15716-15729. PubMed ID: 37889478
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Contactless ultrasound droplet manipulation system for mixing chemical reagents.
    Chu YC; Liu PC; Shen SH; Huang MC; Lian HW; Huang CH
    Ultrasonics; 2025 Jan; 145():107472. PubMed ID: 39288720
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Magnetic-Responsive Bendable Nozzles for Open Surface Droplet Manipulation.
    Prieto-López LO; Xu J; Cui J
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31683935
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Manipulation of single cells inside nanoliter water droplets using acoustic forces.
    Gerlt MS; Haidas D; Ratschat A; Suter P; Dittrich PS; Dual J
    Biomicrofluidics; 2020 Nov; 14(6):064112. PubMed ID: 33381252
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Swirl-like Acoustofluidic Stirring Facilitates Microscale Reactions in Sessile Droplets.
    Lan H; Qian J; Liu Y; Lu S; Zhang B; Huang L; Hu X; Zhang W
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421070
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical-activated digital microfluidics with gradient surface wettability.
    Qi L; Niu Y; Ruck C; Zhao Y
    Lab Chip; 2019 Jan; 19(2):223-232. PubMed ID: 30539191
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acoustofluidics 17: theory and applications of surface acoustic wave devices for particle manipulation.
    Gedge M; Hill M
    Lab Chip; 2012 Sep; 12(17):2998-3007. PubMed ID: 22842855
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Numerical study of acoustophoretic manipulation of particles in microfluidic channels.
    Ma J; Liang D; Yang X; Wang H; Wu F; Sun C; Xiao Y
    Proc Inst Mech Eng H; 2021 Oct; 235(10):1163-1174. PubMed ID: 34116594
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation on submicron particle separation and deflection using tilted-angle standing surface acoustic wave microfluidics.
    Peng T; Lin X; Li L; Huang L; Jiang B; Jia Y
    Heliyon; 2024 Feb; 10(3):e25042. PubMed ID: 38322952
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acoustofluidic Holography for Micro- to Nanoscale Particle Manipulation.
    Gu Y; Chen C; Rufo J; Shen C; Wang Z; Huang PH; Fu H; Zhang P; Cummer SA; Tian Z; Huang TJ
    ACS Nano; 2020 Nov; 14(11):14635-14645. PubMed ID: 32574491
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation.
    Collins DJ; Alan T; Helmerson K; Neild A
    Lab Chip; 2013 Aug; 13(16):3225-31. PubMed ID: 23784263
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-Aligned Interdigitated Transducers for Acoustofluidics.
    Ma Z; Teo AJT; Tan SH; Ai Y; Nguyen NT
    Micromachines (Basel); 2016 Nov; 7(12):. PubMed ID: 30404386
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.
    Collins DJ; Devendran C; Ma Z; Ng JW; Neild A; Ai Y
    Sci Adv; 2016 Jul; 2(7):e1600089. PubMed ID: 27453940
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Programmable Droplet Microfluidics Based on Machine Learning and Acoustic Manipulation.
    Yiannacou K; Sharma V; Sariola V
    Langmuir; 2022 Sep; 38(38):11557-11564. PubMed ID: 36099548
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave.
    Ma Z; Collins DJ; Ai Y
    Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SAW-driven droplet jetting technology in microfluidic: A review.
    Lei Y; Hu H
    Biomicrofluidics; 2020 Nov; 14(6):061505. PubMed ID: 33343781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A simple acoustofluidic chip for microscale manipulation using evanescent Scholte waves.
    Aubert V; Wunenburger R; Valier-Brasier T; Rabaud D; Kleman JP; Poulain C
    Lab Chip; 2016 Jul; 16(13):2532-9. PubMed ID: 27292590
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Silicon-based megahertz ultrasonic nozzles for production of monodisperse micrometer-sized droplets.
    Tsai SC; Cheng CH; Wang N; Song YL; Lee CT; Tsai CS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1968-79. PubMed ID: 19812000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.