These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 34258888)
1. Extending π-Conjugation and Integrating Multi-Redox Centers into One Molecule for High-Capacity Organic Cathodes. Wang Z; Qi Q; Jin W; Zhao X; Huang X; Li Y ChemSusChem; 2021 Sep; 14(18):3858-3866. PubMed ID: 34258888 [TBL] [Abstract][Full Text] [Related]
2. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries. Min DJ; Lee K; Park SY; Kwon JE ChemSusChem; 2020 May; 13(9):2303-2311. PubMed ID: 32109008 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Shi R; Liu L; Lu Y; Wang C; Li Y; Li L; Yan Z; Chen J Nat Commun; 2020 Jan; 11(1):178. PubMed ID: 31924753 [TBL] [Abstract][Full Text] [Related]
4. Synergistic π-Conjugation Organic Cathode for Ultra-Stable Aqueous Aluminum Batteries. Su J; Zhang M; Tian H; Han M; Sun Z; Du K; Cui F; Li J; Huang W; Hu Y Small; 2024 Jul; 20(29):e2312086. PubMed ID: 38412409 [TBL] [Abstract][Full Text] [Related]
5. Long Cycle Life for Rechargeable Lithium Battery using Organic Small Molecule Dihydrodibenzo[c,h][2,6]naphthyridine-5,11-dione as a Cathode after Isoindigo Pigment Isomerization. Yang M; Hu W; Li J; Chen T; Zhao S; Chen X; Wang S; Jin H Adv Sci (Weinh); 2024 Jan; 11(4):e2307134. PubMed ID: 38032135 [TBL] [Abstract][Full Text] [Related]
6. Design of Organic Cathode Material Based on Quinone and Pyrazine Motifs for Rechargeable Lithium and Zinc Batteries. Menart S; Lužanin O; Pirnat K; Pahovnik D; Moškon J; Dominko R ACS Appl Mater Interfaces; 2024 Apr; 16(13):16029-16039. PubMed ID: 38511931 [TBL] [Abstract][Full Text] [Related]
7. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries. Kumankuma-Sarpong J; Tang S; Guo W; Fu Y ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008 [TBL] [Abstract][Full Text] [Related]
8. Stable Hexaazatrinaphthalene-Based Planar Polymer Cathode Material for Organic Lithium-Ion Batteries. Sun Z; Yao H; Li J; Liu B; Lin Z; Shu M; Liu H; Zhu S; Guan S ACS Appl Mater Interfaces; 2023 Sep; 15(36):42603-42610. PubMed ID: 37639524 [TBL] [Abstract][Full Text] [Related]
9. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries. Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698 [TBL] [Abstract][Full Text] [Related]
10. The Decay Mechanism Related to Structural and Morphological Evolution in Lithium-Rich Cathode Materials for Lithium-Ion Batteries. Liu Q; Zheng W; Lu Z; Zhang X; Wan K; Luo J; Fransaer J ChemSusChem; 2020 Jun; 13(12):3237-3242. PubMed ID: 32250058 [TBL] [Abstract][Full Text] [Related]
11. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
12. Synergetic Coupling of Redox-Active Sites on Organic Electrode Material for Robust and High-Performance Sodium-Ion Storage. Yang P; Wu Z; Wang S; Li M; Chen H; Qian S; Zheng M; Wang Y; Li S; Qiu J; Zhang S Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202311460. PubMed ID: 37707882 [TBL] [Abstract][Full Text] [Related]
13. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries. Song Z; Qian Y; Zhang T; Otani M; Zhou H Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977 [TBL] [Abstract][Full Text] [Related]
14. A Monocrystalline Coordination Polymer with Multiple Redox Centers as a High-Performance Cathode for Lithium-Ion Batteries. Luo Y; Liu J; Zhang L Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202209458. PubMed ID: 35899824 [TBL] [Abstract][Full Text] [Related]
15. An Anti-Aromatic Covalent Organic Framework Cathode with Dual-Redox Centers for Rechargeable Aqueous Zinc Batteries. Lin Z; Lin L; Zhu J; Wu W; Yang X; Sun X ACS Appl Mater Interfaces; 2022 Aug; 14(34):38689-38695. PubMed ID: 35975747 [TBL] [Abstract][Full Text] [Related]
16. Binder-Free V Diem AM; Fenk B; Bill J; Burghard Z Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197 [TBL] [Abstract][Full Text] [Related]
17. Constructing Extended π-Conjugated Molecules with Chen Z; Wang J; Cai T; Hu Z; Chu J; Wang F; Gan X; Song Z ACS Appl Mater Interfaces; 2022 Jun; 14(24):27994-28003. PubMed ID: 35695375 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of a Flexible Freestanding Sulfur/Polyacrylonitrile/Graphene Oxide as the Cathode for Lithium/Sulfur Batteries. Peng H; Wang X; Zhao Y; Tan T; Bakenov Z; Zhang Y Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966434 [TBL] [Abstract][Full Text] [Related]
19. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes. Lin Y; Moitoso B; Martinez-Martinez C; Walsh ED; Lacey SD; Kim JW; Dai L; Hu L; Connell JW Nano Lett; 2017 May; 17(5):3252-3260. PubMed ID: 28362096 [TBL] [Abstract][Full Text] [Related]
20. Ethynyl and Furyl Functionalized Porphyrin Complexes as New Organic Cathodes Enabling High Power Density and Long-Term Cycling Stability. Zhou Y; Huang X; Chen X; He F; Chen D; Sun X; Tan S; Gao P ACS Appl Mater Interfaces; 2022 Sep; 14(36):40862-40870. PubMed ID: 36044586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]