These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 34258888)
41. Extending the π-Conjugation of a Donor-Acceptor Covalent Organic Framework for High-Rate and High-Capacity Lithium-Ion Batteries. Li C; Yu A; Zhao W; Long G; Zhang Q; Mei S; Yao CJ Angew Chem Int Ed Engl; 2024 Nov; 63(48):e202409421. PubMed ID: 39136328 [TBL] [Abstract][Full Text] [Related]
42. Toward Theoretically Cycling-Stable Lithium-Sulfur Battery Using a Foldable and Compositionally Heterogeneous Cathode. Zhong L; Yang K; Guan R; Wang L; Wang S; Han D; Xiao M; Meng Y ACS Appl Mater Interfaces; 2017 Dec; 9(50):43640-43647. PubMed ID: 29172445 [TBL] [Abstract][Full Text] [Related]
43. Conjugated microporous polyarylimides immobilization on carbon nanotubes with improved utilization of carbonyls as cathode materials for lithium/sodium-ion batteries. Li K; Wang Y; Gao B; Lv X; Si Z; Wang HG J Colloid Interface Sci; 2021 Nov; 601():446-453. PubMed ID: 34087601 [TBL] [Abstract][Full Text] [Related]
44. Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox-Active Sites for High-Performance Aluminium Organic Batteries. Peng X; Xie Y; Baktash A; Tang J; Lin T; Huang X; Hu Y; Jia Z; Searles DJ; Yamauchi Y; Wang L; Luo B Angew Chem Int Ed Engl; 2022 Jun; 61(25):e202203646. PubMed ID: 35332641 [TBL] [Abstract][Full Text] [Related]
45. Facile Synthesis of Polyphenothiazine as a High-Performance p-Type Cathode for Rechargeable Lithium Batteries. Wang X; Li G; Han Y; Wang F; Chu J; Cai T; Wang B; Song Z ChemSusChem; 2021 Aug; 14(15):3174-3181. PubMed ID: 34101379 [TBL] [Abstract][Full Text] [Related]
46. Design of Linear-Polymer-Coated Graphene Nanosheets with π-Conjugated Structure and Multi-Active-Center for Long-Lifespan and High-Rate Li-Storage Performance. Ma Q; Cao M; Fu Z; Wang R; Xiong P; Hua K; Zhang L; Zhou T; Li H; Zhang C ACS Appl Mater Interfaces; 2024 Jul; 16(27):35033-35042. PubMed ID: 38938082 [TBL] [Abstract][Full Text] [Related]
47. π-Conjugated Hexaazatrinaphthylene-Based Azo Polymer Cathode Material Synthesized by a Reductive Homocoupling Reaction for Organic Lithium-Ion Batteries. Sun Z; Liu H; Shu M; Lin Z; Liu B; Li Y; Li J; Yu T; Yao H; Zhu S; Guan S ACS Appl Mater Interfaces; 2022 Aug; 14(32):36700-36710. PubMed ID: 35938596 [TBL] [Abstract][Full Text] [Related]
48. Anionic Se-Substitution toward High-Performance CuS Wang Z; Zhu Y; Qiao C; Yang S; Jia J; Rafai S; Ma X; Wu S; Ji F; Cao C Small; 2019 Oct; 15(42):e1902797. PubMed ID: 31460703 [TBL] [Abstract][Full Text] [Related]
49. Carbon Quantum Dot Modified Reduced Graphene Oxide Framework for Improved Alkali Metal Ion Storage Performance. Jin S; Allam O; Lee K; Lim J; Lee MJ; Loh SH; Jang SS; Lee SW Small; 2022 Sep; 18(35):e2202898. PubMed ID: 35927029 [TBL] [Abstract][Full Text] [Related]
50. High-Efficiency Electrolyte for Li-Rich Cathode Materials Achieving Enhanced Cycle Stability and Suppressed Voltage Fading Capable of Practical Applications on a Li-Ion Battery. Song D; Sun X; Niu Q; Zhao Q; Wang C; Yang L; Wu Y; Li M; Ohsaka T; Matsumotoc F; Wu J ACS Appl Mater Interfaces; 2020 Nov; 12(44):49666-49679. PubMed ID: 33079528 [TBL] [Abstract][Full Text] [Related]
51. Rechargeable Aqueous Aluminum Organic Batteries. Chen J; Zhu Q; Jiang L; Liu R; Yang Y; Tang M; Wang J; Wang H; Guo L Angew Chem Int Ed Engl; 2021 Mar; 60(11):5794-5799. PubMed ID: 33314518 [TBL] [Abstract][Full Text] [Related]
52. Cuprous Self-Doping Regulated Mesoporous CuS Nanotube Cathode Materials for Rechargeable Magnesium Batteries. Du C; Zhu Y; Wang Z; Wang L; Younas W; Ma X; Cao C ACS Appl Mater Interfaces; 2020 Aug; 12(31):35035-35042. PubMed ID: 32667190 [TBL] [Abstract][Full Text] [Related]
53. A High Capacity, Good Safety and Low Cost Na Guan W; Pan B; Zhou P; Mi J; Zhang D; Xu J; Jiang Y ACS Appl Mater Interfaces; 2017 Jul; 9(27):22369-22377. PubMed ID: 28574241 [TBL] [Abstract][Full Text] [Related]
54. Excellent rate capability and cycling stability in Li Mou J; Deng Y; Song Z; Zheng Q; Lam KH; Lin D Dalton Trans; 2018 May; 47(20):7020-7028. PubMed ID: 29737358 [TBL] [Abstract][Full Text] [Related]
55. Long-Term Cycling Stability of Porphyrin Electrode for Li/Na Charge Storage at High Temperature. Zhang J; Ye C; He F; Zeng Y; Xiao J; Yang X; Shu H; Qi H; Liu W; Gao P ChemSusChem; 2023 Apr; 16(7):e202202159. PubMed ID: 36593581 [TBL] [Abstract][Full Text] [Related]
56. Nitrogen-Linked Hexaazatrinaphthylene Polymer as Cathode Material in Lithium-Ion Battery. Wang J; En JCZ; Riduan SN; Zhang Y Chemistry; 2020 Feb; 26(12):2581-2585. PubMed ID: 31845409 [TBL] [Abstract][Full Text] [Related]
57. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273 [TBL] [Abstract][Full Text] [Related]
58. In Situ Electropolymerization Enables Ultrafast Long Cycle Life and High-Voltage Organic Cathodes for Lithium Batteries. Zhao C; Chen Z; Wang W; Xiong P; Li B; Li M; Yang J; Xu Y Angew Chem Int Ed Engl; 2020 Jul; 59(29):11992-11998. PubMed ID: 32266770 [TBL] [Abstract][Full Text] [Related]
59. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity. Yang X; Hu Y; Dunlap N; Wang X; Huang S; Su Z; Sharma S; Jin Y; Huang F; Wang X; Lee SH; Zhang W Angew Chem Int Ed Engl; 2020 Nov; 59(46):20385-20389. PubMed ID: 32722860 [TBL] [Abstract][Full Text] [Related]
60. Immobilizing Quinone-Fused Aza-Phenazine into π-d Conjugated Coordination Polymers with Multiple-Active Sites for Sodium-Ion Batteries. Cheng L; Yu J; Chen L; Chu J; Wang J; Wang HG; Feng D; Cui F; Zhu G Small; 2023 Aug; 19(35):e2301578. PubMed ID: 37105762 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]