BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34259301)

  • 1. Molecule-specific vibration-based chiral differentiation of Raman spectra using cysteine modified gold nanoparticles: the cases of tyrosine and phenylalanine.
    Sun X; Wang N; He Y; Kong H; Yang H; Liu X
    J Mater Chem B; 2021 Sep; 9(35):7167-7171. PubMed ID: 34259301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral Detection of Glucose: An Amino Acid-Assisted Surface-Enhanced Raman Scattering Strategy Showing Opposite Enantiomeric Effects on SERS Signals.
    Wang N; Zhao L; Liu C; Zhang J; He Y; Yang H; Liu X
    Anal Chem; 2022 Oct; 94(42):14565-14572. PubMed ID: 36219134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved discrimination of phenylalanine enantiomers by surface enhanced Raman scattering assay: molecular insight into chiral interaction.
    He Y; Zhou Q; Wang N; Yang H; Liu X
    Analyst; 2022 Apr; 147(8):1540-1543. PubMed ID: 35311873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric recognition of aromatic amino acid enantiomers by gluconic acid-capped gold nanoparticles.
    Yang J; Li X; Du Y; Ma M; Zhang L; Zhang J; Li P
    Amino Acids; 2021 Feb; 53(2):195-204. PubMed ID: 33432455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetric discrimination and spectroscopic detection of tyrosine enantiomers based on melamine induced aggregation of l-cysteine/Au nanoparticles.
    Chen H; Luo Y; Cai W; Xu L; Li J; Kong Y
    Talanta; 2024 May; 271():125758. PubMed ID: 38340415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chirality Detection by Raman Spectroscopy: The Case of Enantioselective Interactions between Amino Acids and Polymer-Modified Chiral Silica.
    Kong H; Sun X; Yang L; Liu X; Yang H; Jin RH
    Anal Chem; 2020 Nov; 92(21):14292-14296. PubMed ID: 33085471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral plasmonic Au-Ag core shell nanobipyramid for SERS enantiomeric discrimination of biologically relevant small molecules.
    Li H; Zhang J; Jiang L; Yuan R; Yang X
    Anal Chim Acta; 2023 Jan; 1239():340740. PubMed ID: 36628734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chiral signal-amplified sensor for enantioselective discrimination of amino acids based on charge transfer-induced SERS.
    Wang Y; Liu J; Zhao X; Yang C; Ozaki Y; Xu Z; Zhao B; Yu Z
    Chem Commun (Camb); 2019 Aug; 55(65):9697-9700. PubMed ID: 31347623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanorod@chiral mesoporous silica core-shell nanoparticles with unique optical properties.
    Liu W; Zhu Z; Deng K; Li Z; Zhou Y; Qiu H; Gao Y; Che S; Tang Z
    J Am Chem Soc; 2013 Jul; 135(26):9659-64. PubMed ID: 23742128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interparticle chiral recognition of enantiomers: a nanoparticle-based regulation strategy.
    Lim II; Mott D; Engelhard MH; Pan Y; Kamodia S; Luo J; Njoki PN; Zhou S; Wang L; Zhong CJ
    Anal Chem; 2009 Jan; 81(2):689-98. PubMed ID: 19072589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface enhanced Raman scattering of amino acids assisted by gold nanoparticles and Gd(3+) ions.
    López-Neira JP; Galicia-Hernández JM; Reyes-Coronado A; Pérez E; Castillo-Rivera F
    J Phys Chem A; 2015 May; 119(18):4127-35. PubMed ID: 25860315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Raman tag-bridged core-shell Au@Cu
    He J; Dong J; Hu Y; Li G; Hu Y
    Nanoscale; 2019 Mar; 11(13):6089-6100. PubMed ID: 30869726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetric chiral recognition of D/L-phenylalanine based on triangular silver nanoplates.
    Wu P; Hu F; Wang R; Gao L; Huang T; Xin Y; He H
    Amino Acids; 2018 Sep; 50(9):1269-1278. PubMed ID: 29961142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles.
    Lee HE; Ahn HY; Mun J; Lee YY; Kim M; Cho NH; Chang K; Kim WS; Rho J; Nam KT
    Nature; 2018 Apr; 556(7701):360-365. PubMed ID: 29670265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential-dependent studies on the interaction between phenylalanine-substituted bombesin fragments and roughened Ag, Au, and Cu electrode surfaces.
    Podstawka E; Niaura G; Proniewicz LM
    J Phys Chem B; 2010 Jan; 114(2):1010-29. PubMed ID: 20025214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization of gold nanoparticles with amino acid, beta-amyloid peptides and fragment.
    Majzik A; Fülöp L; Csapó E; Bogár F; Martinek T; Penke B; Bíró G; Dékány I
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):235-41. PubMed ID: 20674288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of the CLPFFD peptide with gold nanospheres. A Raman, surface enhanced Raman scattering and theoretical study.
    Vera AM; Cárcamo JJ; Aliaga AE; Gómez-Jeria JS; Kogan MJ; Campos-Vallette MM
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():251-6. PubMed ID: 25022496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual chiral recognition of D/L-leucine using cube-shaped gold nanoparticles as colorimetric probes.
    Zhou X; Xu C; Jin Y; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117263. PubMed ID: 31247465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes.
    Zhang L; Xu C; Liu C; Li B
    Anal Chim Acta; 2014 Jan; 809():123-7. PubMed ID: 24418142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ photoreduced silver nanoparticles on cysteine: an insight into the origin of chirality.
    Liu H; Ye Y; Chen J; Lin D; Jiang Z; Liu Z; Sun B; Yang L; Liu J
    Chemistry; 2012 Jun; 18(26):8037-41. PubMed ID: 22639423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.