These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Accelerating the discovery of antifungal peptides using deep temporal convolutional networks. Singh V; Shrivastava S; Kumar Singh S; Kumar A; Saxena S Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152278 [TBL] [Abstract][Full Text] [Related]
3. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types. Xiao X; Shao YT; Cheng X; Stamatovic B Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086856 [TBL] [Abstract][Full Text] [Related]
4. Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides. Medina-Ortiz D; Contreras S; Fernández D; Soto-García N; Moya I; Cabas-Mora G; Olivera-Nappa Á Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201537 [TBL] [Abstract][Full Text] [Related]
5. An efficient hybrid deep learning architecture for predicting short antimicrobial peptides. Nguyen QH; Nguyen-Vo TH; Do TTT; Nguyen BP Proteomics; 2024 Jul; 24(14):e2300382. PubMed ID: 38837544 [TBL] [Abstract][Full Text] [Related]
6. Machine Learning-Driven Discovery and Evaluation of Antimicrobial Peptides from Song J; Liu K; Jin X; Huang K; Fu S; Yi W; Cai Y; Yu Z; Mao F; Zhang Y Mar Drugs; 2024 Aug; 22(9):. PubMed ID: 39330266 [TBL] [Abstract][Full Text] [Related]
7. Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides. Lefin N; Herrera-Belén L; Farias JG; Beltrán JF Mol Divers; 2024 Aug; 28(4):2365-2374. PubMed ID: 37626205 [TBL] [Abstract][Full Text] [Related]
8. Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics. Koromina M; Pandi MT; Patrinos GP OMICS; 2019 Nov; 23(11):539-548. PubMed ID: 31651216 [TBL] [Abstract][Full Text] [Related]
9. Machine Learning Prediction of Antimicrobial Peptides. Wang G; Vaisman II; van Hoek ML Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806 [TBL] [Abstract][Full Text] [Related]
10. A novel antibacterial peptide recognition algorithm based on BERT. Zhang Y; Lin J; Zhao L; Zeng X; Liu X Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037687 [TBL] [Abstract][Full Text] [Related]
11. A review on antimicrobial peptides databases and the computational tools. Ramazi S; Mohammadi N; Allahverdi A; Khalili E; Abdolmaleki P Database (Oxford); 2022 Mar; 2022():. PubMed ID: 35305010 [TBL] [Abstract][Full Text] [Related]
12. Discovery of AMPs from random peptides via deep learning-based model and biological activity validation. Du J; Yang C; Deng Y; Guo H; Gu M; Chen D; Liu X; Huang J; Yan W; Liu J Eur J Med Chem; 2024 Nov; 277():116797. PubMed ID: 39197254 [TBL] [Abstract][Full Text] [Related]
13. AmpClass: an Antimicrobial Peptide Predictor Based on Supervised Machine Learning. Mera-Banguero C; Orduz S; Cardona P; Orrego A; Muñoz-Pérez J; Branch-Bedoya JW An Acad Bras Cienc; 2024; 96(4):e20230756. PubMed ID: 39383429 [TBL] [Abstract][Full Text] [Related]
14. PreTP-EL: prediction of therapeutic peptides based on ensemble learning. Guo Y; Yan K; Lv H; Liu B Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34459488 [TBL] [Abstract][Full Text] [Related]
15. Proteomic Screening for Prediction and Design of Antimicrobial Peptides with AmpGram. Burdukiewicz M; Sidorczuk K; Rafacz D; Pietluch F; Chilimoniuk J; Rödiger S; Gagat P Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32560350 [TBL] [Abstract][Full Text] [Related]
16. StaBle-ABPpred: a stacked ensemble predictor based on biLSTM and attention mechanism for accelerated discovery of antibacterial peptides. Singh V; Shrivastava S; Kumar Singh S; Kumar A; Saxena S Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34750606 [TBL] [Abstract][Full Text] [Related]
17. Development of Antimicrobial Peptide Prediction Tool for Aquaculture Industries. Gautam A; Sharma A; Jaiswal S; Fatma S; Arora V; Iquebal MA; Nandi S; Sundaray JK; Jayasankar P; Rai A; Kumar D Probiotics Antimicrob Proteins; 2016 Sep; 8(3):141-9. PubMed ID: 27141850 [TBL] [Abstract][Full Text] [Related]
18. EnAMP: A novel deep learning ensemble antibacterial peptide recognition algorithm based on multi-features. Zhuang J; Gao W; Su R J Bioinform Comput Biol; 2024 Feb; 22(1):2450001. PubMed ID: 38406833 [TBL] [Abstract][Full Text] [Related]
19. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides. Gull S; Shamim N; Minhas F Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306 [TBL] [Abstract][Full Text] [Related]
20. Deep-ABPpred: identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec. Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33784381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]