These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 34259329)
21. Discovery of novel antimicrobial peptides: A transcriptomic study of the sea anemone Cnidopus japonicus. Grafskaia EN; Polina NF; Babenko VV; Kharlampieva DD; Bobrovsky PA; Manuvera VA; Farafonova TE; Anikanov NA; Lazarev VN J Bioinform Comput Biol; 2018 Apr; 16(2):1840006. PubMed ID: 29361893 [TBL] [Abstract][Full Text] [Related]
22. AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Bhadra P; Yan J; Li J; Fong S; Siu SWI Sci Rep; 2018 Jan; 8(1):1697. PubMed ID: 29374199 [TBL] [Abstract][Full Text] [Related]
23. Comparison of deep learning models with simple method to assess the problem of antimicrobial peptides prediction. Lobanov MY; Slizen MV; Dovidchenko NV; Panfilov AV; Surin AA; Likhachev IV; Galzitskaya OV Mol Inform; 2024 May; 43(5):e202200181. PubMed ID: 36961202 [TBL] [Abstract][Full Text] [Related]
24. dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data. Jhong JH; Yao L; Pang Y; Li Z; Chung CR; Wang R; Li S; Li W; Luo M; Ma R; Huang Y; Zhu X; Zhang J; Feng H; Cheng Q; Wang C; Xi K; Wu LC; Chang TH; Horng JT; Zhu L; Chiang YC; Wang Z; Lee TY Nucleic Acids Res; 2022 Jan; 50(D1):D460-D470. PubMed ID: 34850155 [TBL] [Abstract][Full Text] [Related]
25. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC. Meher PK; Sahu TK; Saini V; Rao AR Sci Rep; 2017 Feb; 7():42362. PubMed ID: 28205576 [TBL] [Abstract][Full Text] [Related]
26. CAMP: a useful resource for research on antimicrobial peptides. Thomas S; Karnik S; Barai RS; Jayaraman VK; Idicula-Thomas S Nucleic Acids Res; 2010 Jan; 38(Database issue):D774-80. PubMed ID: 19923233 [TBL] [Abstract][Full Text] [Related]
27. Accelerating antibiotic discovery through artificial intelligence. Melo MCR; Maasch JRMA; de la Fuente-Nunez C Commun Biol; 2021 Sep; 4(1):1050. PubMed ID: 34504303 [TBL] [Abstract][Full Text] [Related]
28. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities. Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638 [TBL] [Abstract][Full Text] [Related]
29. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model. Lee H; Lee S; Lee I; Nam H Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699 [TBL] [Abstract][Full Text] [Related]
30. Predicting Antimicrobial Peptides by Using Increment of Diversity with Quadratic Discriminant Analysis Method. Feng P; Wang Z; Yu X IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1309-1312. PubMed ID: 28212093 [TBL] [Abstract][Full Text] [Related]
31. Sense the moment: A highly sensitive antimicrobial activity predictor based on hydrophobic moment. Porto WF; Ferreira KCV; Ribeiro SM; Franco OL Biochim Biophys Acta Gen Subj; 2022 Mar; 1866(3):130070. PubMed ID: 34953809 [TBL] [Abstract][Full Text] [Related]
32. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides. Xu J; Li F; Leier A; Xiang D; Shen HH; Marquez Lago TT; Li J; Yu DJ; Song J Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33774670 [TBL] [Abstract][Full Text] [Related]
33. An Overview of Databases and Bioinformatics Tools for Plant Antimicrobial Peptides. Quintans ILADCR; de Araújo JVA; Rocha LNM; de Andrade AEB; do Rêgo TG; Deyholos MK Curr Protein Pept Sci; 2022; 23(1):6-19. PubMed ID: 34951361 [TBL] [Abstract][Full Text] [Related]
34. CalcAMP: A New Machine Learning Model for the Accurate Prediction of Antimicrobial Activity of Peptides. Bournez C; Riool M; de Boer L; Cordfunke RA; de Best L; van Leeuwen R; Drijfhout JW; Zaat SAJ; van Westen GJP Antibiotics (Basel); 2023 Apr; 12(4):. PubMed ID: 37107088 [TBL] [Abstract][Full Text] [Related]
35. Discovery of antimicrobial peptides in the global microbiome with machine learning. Santos-Júnior CD; Torres MDT; Duan Y; Rodríguez Del Río Á; Schmidt TSB; Chong H; Fullam A; Kuhn M; Zhu C; Houseman A; Somborski J; Vines A; Zhao XM; Bork P; Huerta-Cepas J; de la Fuente-Nunez C; Coelho LP Cell; 2024 Jul; 187(14):3761-3778.e16. PubMed ID: 38843834 [TBL] [Abstract][Full Text] [Related]
36. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search. Garg A; Raghava GP In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201 [TBL] [Abstract][Full Text] [Related]
37. Antimicrobial Peptides: An Update on Classifications and Databases. Bin Hafeez A; Jiang X; Bergen PJ; Zhu Y Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769122 [TBL] [Abstract][Full Text] [Related]
38. Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features. Singh O; Hsu WL; Su EC BMC Bioinformatics; 2021 Jul; 22(1):389. PubMed ID: 34330209 [TBL] [Abstract][Full Text] [Related]