These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 34259815)

  • 1. Conditional impairment of Coxiella burnetii by glucose-6P dehydrogenase activity.
    Sanchez SE; Omsland A
    Pathog Dis; 2021 Jul; 79(6):. PubMed ID: 34259815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical and Nutritional Requirements for Axenic Replication Suggest Physiological Basis for
    Vallejo Esquerra E; Yang H; Sanchez SE; Omsland A
    Front Cell Infect Microbiol; 2017; 7():190. PubMed ID: 28620582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Plasticity Aids Amphotropism of Coxiella burnetii.
    Sanchez SE; Goodman AG; Omsland A
    Infect Immun; 2021 Nov; 89(12):e0013521. PubMed ID: 34491791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host cell-free growth of the Q fever bacterium Coxiella burnetii.
    Omsland A; Cockrell DC; Howe D; Fischer ER; Virtaneva K; Sturdevant DE; Porcella SF; Heinzen RA
    Proc Natl Acad Sci U S A; 2009 Mar; 106(11):4430-4. PubMed ID: 19246385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life on the outside: the rescue of Coxiella burnetii from its host cell.
    Omsland A; Heinzen RA
    Annu Rev Microbiol; 2011; 65():111-28. PubMed ID: 21639786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple Substrate Usage of
    Häuslein I; Cantet F; Reschke S; Chen F; Bonazzi M; Eisenreich W
    Front Cell Infect Microbiol; 2017; 7():285. PubMed ID: 28706879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coxiella burnetii utilizes both glutamate and glucose during infection with glucose uptake mediated by multiple transporters.
    Kuba M; Neha N; De Souza DP; Dayalan S; Newson JPM; Tull D; McConville MJ; Sansom FM; Newton HJ
    Biochem J; 2019 Oct; 476(19):2851-2867. PubMed ID: 31527117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical Role for Molecular Iron in Coxiella burnetii Replication and Viability.
    Sanchez SE; Omsland A
    mSphere; 2020 Jul; 5(4):. PubMed ID: 32699121
    [No Abstract]   [Full Text] [Related]  

  • 9. A CsrA-Binding,
    Wachter S; Bonazzi M; Shifflett K; Moses AS; Raghavan R; Minnick MF
    J Bacteriol; 2019 Nov; 201(22):. PubMed ID: 31451541
    [No Abstract]   [Full Text] [Related]  

  • 10. SdrA, an NADP(H)-regenerating enzyme, is crucial for Coxiella burnetii to resist oxidative stress and replicate intracellularly.
    Bitew MA; Hofmann J; De Souza DP; Wawegama NK; Newton HJ; Sansom FM
    Cell Microbiol; 2020 May; 22(5):e13154. PubMed ID: 31872956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Major differential gene regulation in Coxiella burnetii between in vivo and in vitro cultivation models.
    Kuley R; Bossers-deVries R; Smith HE; Smits MA; Roest HI; Bossers A
    BMC Genomics; 2015 Nov; 16():953. PubMed ID: 26572556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress.
    Filosa S; Fico A; Paglialunga F; Balestrieri M; Crooke A; Verde P; Abrescia P; Bautista JM; Martini G
    Biochem J; 2003 Mar; 370(Pt 3):935-43. PubMed ID: 12466018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependency of
    Larson CL; Beare PA; Heinzen RA
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose-6-Phosphate Dehydrogenase, ZwfA, a Dual Cofactor-Specific Isozyme Is Predominantly Involved in the Glucose Metabolism of Pseudomonas bharatica CSV86
    Shah BA; Kasarlawar ST; Phale PS
    Microbiol Spectr; 2022 Dec; 10(6):e0381822. PubMed ID: 36354357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of Axenic Culture Tools to Study Coxiella burnetii.
    Sanchez SE; Vallejo-Esquerra E; Omsland A
    Curr Protoc Microbiol; 2018 Aug; 50(1):e52. PubMed ID: 29927105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the physiology of rickettsiae. III. Glucose phosphorylation and hexokinase activity in Coxiella burnetii.
    PARETSKY D; CONSIGLI RA; DOWNS CM
    J Bacteriol; 1962 Mar; 83(3):538-43. PubMed ID: 14483836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii.
    Hackstadt T; Williams JC
    Proc Natl Acad Sci U S A; 1981 May; 78(5):3240-4. PubMed ID: 6942430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133.
    Summers ML; Wallis JG; Campbell EL; Meeks JC
    J Bacteriol; 1995 Nov; 177(21):6184-94. PubMed ID: 7592384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coxiella burnetii type IVB secretion system region I genes are expressed early during the infection of host cells.
    Morgan JK; Luedtke BE; Thompson HA; Shaw EI
    FEMS Microbiol Lett; 2010 Oct; 311(1):61-9. PubMed ID: 20727011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Recent Evolution of a Maternally-Inherited Endosymbiont of Ticks Led to the Emergence of the Q Fever Pathogen, Coxiella burnetii.
    Duron O; Noël V; McCoy KD; Bonazzi M; Sidi-Boumedine K; Morel O; Vavre F; Zenner L; Jourdain E; Durand P; Arnathau C; Renaud F; Trape JF; Biguezoton AS; Cremaschi J; Dietrich M; Léger E; Appelgren A; Dupraz M; Gómez-Díaz E; Diatta G; Dayo GK; Adakal H; Zoungrana S; Vial L; Chevillon C
    PLoS Pathog; 2015 May; 11(5):e1004892. PubMed ID: 25978383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.