These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 34260205)

  • 21. Bacterial Nanocellulose/MoS
    Ferreira-Neto EP; Ullah S; da Silva TCA; Domeneguetti RR; Perissinotto AP; de Vicente FS; Rodrigues-Filho UP; Ribeiro SJL
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41627-41643. PubMed ID: 32809794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrophobic Cellulose Acetate Aerogels for Thermal Insulation.
    Zhang S; Yang Z; Huang X; Wang J; Xiao Y; He J; Feng J; Xiong S; Li Z
    Gels; 2022 Oct; 8(10):. PubMed ID: 36286172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superior stable, hydrophobic and multifunctional nanocellulose hybrid aerogel via rapid UV induced in-situ polymerization.
    Zhang M; Jiang S; Li M; Wang N; Liu L; Liu L; Ge A
    Carbohydr Polym; 2022 Jul; 288():119370. PubMed ID: 35450632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and Properties of Highly Transparent SiO
    Shi B; Xie L; Ma B; Zhou Z; Xu B; Qu L
    Gels; 2022 Nov; 8(11):. PubMed ID: 36421566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators.
    Kobayashi Y; Saito T; Isogai A
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10394-7. PubMed ID: 24985785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of aerogels based on nanocrystalline cellulose and chitosan for high efficient oil/water separation and water disinfection.
    Zhang Y; Yin M; Li L; Fan B; Liu Y; Li R; Ren X; Huang TS; Kim IS
    Carbohydr Polym; 2020 Sep; 243():116461. PubMed ID: 32532394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock.
    Du A; Liu M; Huang S; Li C; Zhou B
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29937521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrophobization of aerogels based on chitosan, nanocellulose and tannic acid: Improvements on the aerogel features and the adsorption of contaminants in water.
    Camparotto NG; Neves TF; Mastelaro VR; Prediger P
    Environ Res; 2023 Mar; 220():115197. PubMed ID: 36592805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ionic-physical-chemical triple cross-linked all-biomass-based aerogel for thermal insulation applications.
    An X; Ma C; Gong L; Liu C; Li N; Liu Z; Li X
    J Colloid Interface Sci; 2024 Aug; 668():678-690. PubMed ID: 38710124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polyimide aerogels with novel bimodal micro and nano porous structure assembly for airborne nano filtering applications.
    Mosanenzadeh SG; Saadatnia Z; Karamikamkar S; Park CB; Naguib HE
    RSC Adv; 2020 Jun; 10(39):22909-22920. PubMed ID: 35520303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plant cell wall inspired xyloglucan/cellulose nanocrystals aerogels produced by freeze-casting.
    Jaafar Z; Quelennec B; Moreau C; Lourdin D; Maigret JE; Pontoire B; D'orlando A; Coradin T; Duchemin B; Fernandes FM; Cathala B
    Carbohydr Polym; 2020 Nov; 247():116642. PubMed ID: 32829789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrophobic and thermal-insulating aerogels based on rigid cellulose nanocrystal and elastic rubber.
    Chen Z; Li Z; Lan P; Xu H; Lin N
    Carbohydr Polym; 2022 Jan; 275():118708. PubMed ID: 34742433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hollow glass microspheres embedded in porous network of chitosan aerogel used for thermal insulation and flame retardant materials.
    Wang P; He B; An Z; Xiao W; Song X; Yan K; Zhang J
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128329. PubMed ID: 38000605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of biomass-based carbon aerogels in energy and sustainability.
    Sam DK; Sam EK; Durairaj A; Lv X; Zhou Z; Liu J
    Carbohydr Res; 2020 May; 491():107986. PubMed ID: 32222490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elastic Aerogels of Cellulose Nanofibers@Metal-Organic Frameworks for Thermal Insulation and Fire Retardancy.
    Zhou S; Apostolopoulou-Kalkavoura V; Tavares da Costa MV; Bergström L; Strømme M; Xu C
    Nanomicro Lett; 2019 Dec; 12(1):9. PubMed ID: 34138073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced Mechanical Stability and Hydrophobicity of Cellulose Aerogels via Quantitative Doping of Nano-Lignin.
    Wang X; Yang X; Wu Z; Liu X; Li Q; Zhu W; Jiang Y; Hu L
    Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of Bacterial Cellulose Aerogels With Improved Physico-Mechanical Properties and Antibacterial Effect.
    Revin VV; Nazarova NB; Tsareva EE; Liyaskina EV; Revin VD; Pestov NA
    Front Bioeng Biotechnol; 2020; 8():603407. PubMed ID: 33344435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold.
    Fu J; Wang S; He C; Lu Z; Huang J; Chen Z
    Carbohydr Polym; 2016 Aug; 147():89-96. PubMed ID: 27178912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Boron nitride-nanosheet enhanced cellulose nanofiber aerogel with excellent thermal management properties.
    Liu Y; Zhang Y; Liao T; Gao L; Wang M; Xu X; Yang X; Liu H
    Carbohydr Polym; 2020 Aug; 241():116425. PubMed ID: 32507211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative study of aerogels obtained from differently prepared nanocellulose fibers.
    Chen W; Li Q; Wang Y; Yi X; Zeng J; Yu H; Liu Y; Li J
    ChemSusChem; 2014 Jan; 7(1):154-61. PubMed ID: 24420495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.