These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 34260225)

  • 41. Emerging Directions for Carbon Capture Technologies: A Synergy of High-Throughput Theoretical Calculations and Machine Learning.
    Lei Q; Li L; Chen H; Wang X
    Environ Sci Technol; 2023 Nov; 57(45):17189-17200. PubMed ID: 37917731
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Getting Momentum: From Biocatalysis to Advanced Synthetic Biology.
    Badenhorst CPS; Bornscheuer UT
    Trends Biochem Sci; 2018 Mar; 43(3):180-198. PubMed ID: 29426712
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Engineering enzymes for biocatalysis.
    Dalby PA
    Recent Pat Biotechnol; 2007; 1(1):1-9. PubMed ID: 19075829
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Better library design: data-driven protein engineering.
    Chaparro-Riggers JF; Polizzi KM; Bommarius AS
    Biotechnol J; 2007 Feb; 2(2):180-91. PubMed ID: 17183506
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Data-driven strategies for the computational design of enzyme thermal stability: trends, perspectives, and prospects.
    Dou Z; Sun Y; Jiang X; Wu X; Li Y; Gong B; Wang L
    Acta Biochim Biophys Sin (Shanghai); 2023 Mar; 55(3):343-355. PubMed ID: 37143326
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Machine learning-driven protein engineering: a case study in computational drug discovery.
    Rickerby HF; Putintseva K; Cozens C
    Eng Biol; 2020 Mar; 4(1):7-9. PubMed ID: 36970228
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering a Histone Reader Protein by Combining Directed Evolution, Sequencing, and Neural Network Based Ordinal Regression.
    Parkinson J; Hard R; Ainsworth RI; Li N; Wang W
    J Chem Inf Model; 2020 Aug; 60(8):3992-4004. PubMed ID: 32786513
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Directed evolution 2.0: improving and deciphering enzyme properties.
    Cheng F; Zhu L; Schwaneberg U
    Chem Commun (Camb); 2015 Jun; 51(48):9760-72. PubMed ID: 25874672
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Machine Learning for the Discovery, Design, and Engineering of Materials.
    Duan C; Nandy A; Kulik HJ
    Annu Rev Chem Biomol Eng; 2022 Jun; 13():405-429. PubMed ID: 35320698
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Advances in machine learning for directed evolution.
    Wittmann BJ; Johnston KE; Wu Z; Arnold FH
    Curr Opin Struct Biol; 2021 Aug; 69():11-18. PubMed ID: 33647531
    [TBL] [Abstract][Full Text] [Related]  

  • 51. GeneORator: An Effective Strategy for Navigating Protein Sequence Space More Efficiently through Boolean OR-Type DNA Libraries.
    Currin A; Kwok J; Sadler JC; Bell EL; Swainston N; Ababi M; Day P; Turner NJ; Kell DB
    ACS Synth Biol; 2019 Jun; 8(6):1371-1378. PubMed ID: 31132850
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 100th Anniversary of Macromolecular Science Viewpoint: Data-Driven Protein Design.
    Ferguson AL; Ranganathan R
    ACS Macro Lett; 2021 Mar; 10(3):327-340. PubMed ID: 35549066
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Machine Learning Integrating Protein Structure, Sequence, and Dynamics to Predict the Enzyme Activity of Bovine Enterokinase Variants.
    Elia Venanzi NA; Basciu A; Vargiu AV; Kiparissides A; Dalby PA; Dikicioglu D
    J Chem Inf Model; 2024 Apr; 64(7):2681-2694. PubMed ID: 38386417
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enzyme engineering for enantioselectivity: from trial-and-error to rational design?
    Otten LG; Hollmann F; Arends IW
    Trends Biotechnol; 2010 Jan; 28(1):46-54. PubMed ID: 19913316
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Generation of sequence variants via accelerated molecular evolution methods.
    Fu M; Zhang X; Lai X; Wu X; Feng F; Peng J; Zhong H; Zhang Y; Wang Y; Zhou Q; Wang S; Chen L; He Z; Gao Y; Ma X; He R; Liu Q
    Recent Pat DNA Gene Seq; 2013 Aug; 7(2):144-56. PubMed ID: 23388030
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational Protein Design - Where it goes?
    Xu B; Chen Y; Xue W
    Curr Med Chem; 2024; 31(20):2841-2854. PubMed ID: 37272467
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Gradient of Sitewise Diversity Promotes Evolutionary Fitness for Binder Discovery in a Three-Helix Bundle Protein Scaffold.
    Woldring DR; Holec PV; Stern LA; Du Y; Hackel BJ
    Biochemistry; 2017 Mar; 56(11):1656-1671. PubMed ID: 28248518
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Machine-Learning-Guided Mutagenesis for Directed Evolution of Fluorescent Proteins.
    Saito Y; Oikawa M; Nakazawa H; Niide T; Kameda T; Tsuda K; Umetsu M
    ACS Synth Biol; 2018 Sep; 7(9):2014-2022. PubMed ID: 30103599
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DeCOIL: Optimization of Degenerate Codon Libraries for Machine Learning-Assisted Protein Engineering.
    Yang J; Ducharme J; Johnston KE; Li FZ; Yue Y; Arnold FH
    ACS Synth Biol; 2023 Aug; 12(8):2444-2454. PubMed ID: 37524064
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using machine learning methods to predict experimental high-throughput screening data.
    Mballo C; Makarenkov V
    Comb Chem High Throughput Screen; 2010 Jun; 13(5):430-41. PubMed ID: 20236062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.