These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 34260237)

  • 1. Analytical Gradients for Nuclear-Electronic Orbital Time-Dependent Density Functional Theory: Excited-State Geometry Optimizations and Adiabatic Excitation Energies.
    Tao Z; Roy S; Schneider PE; Pavošević F; Hammes-Schiffer S
    J Chem Theory Comput; 2021 Aug; 17(8):5110-5122. PubMed ID: 34260237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Dynamics with Nuclear-Electronic Orbital Density Functional Theory.
    Tao Z; Yu Q; Roy S; Hammes-Schiffer S
    Acc Chem Res; 2021 Nov; 54(22):4131-4141. PubMed ID: 34726895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum Effects via the Nuclear-Electronic Orbital Method.
    Pavošević F; Culpitt T; Hammes-Schiffer S
    Chem Rev; 2020 May; 120(9):4222-4253. PubMed ID: 32283015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear-electronic orbital methods: Foundations and prospects.
    Hammes-Schiffer S
    J Chem Phys; 2021 Jul; 155(3):030901. PubMed ID: 34293877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.
    Yang Y; Culpitt T; Hammes-Schiffer S
    J Phys Chem Lett; 2018 Apr; 9(7):1765-1770. PubMed ID: 29553738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical gradients for nuclear-electronic orbital multistate density functional theory: Geometry optimizations and reaction paths.
    Yu Q; Schneider PE; Hammes-Schiffer S
    J Chem Phys; 2022 Mar; 156(11):114115. PubMed ID: 35317589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicomponent Density Functional Theory: Impact of Nuclear Quantum Effects on Proton Affinities and Geometries.
    Brorsen KR; Yang Y; Hammes-Schiffer S
    J Phys Chem Lett; 2017 Aug; 8(15):3488-3493. PubMed ID: 28686449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear-Electronic Orbital QM/MM Approach: Geometry Optimizations and Molecular Dynamics.
    Chow M; Lambros E; Li X; Hammes-Schiffer S
    J Chem Theory Comput; 2023 Jul; 19(13):3839-3848. PubMed ID: 37329317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicomponent Coupled Cluster Singles and Doubles Theory within the Nuclear-Electronic Orbital Framework.
    Pavošević F; Culpitt T; Hammes-Schiffer S
    J Chem Theory Comput; 2019 Jan; 15(1):338-347. PubMed ID: 30525610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-quantum descriptions of molecular systems from constrained nuclear-electronic orbital density functional theory.
    Xu X; Yang Y
    J Chem Phys; 2020 Aug; 153(7):074106. PubMed ID: 32828104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicomponent equation-of-motion coupled cluster singles and doubles: Theory and calculation of excitation energies for positronium hydride.
    Pavošević F; Hammes-Schiffer S
    J Chem Phys; 2019 Apr; 150(16):161102. PubMed ID: 31042898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Vibrational Frequencies with Multiple Quantum Protons within the Nuclear-Electronic Orbital Framework.
    Culpitt T; Yang Y; Schneider PE; Pavošević F; Hammes-Schiffer S
    J Chem Theory Comput; 2019 Dec; 15(12):6840-6849. PubMed ID: 31618582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Time-Dependent Nuclear-Electronic Orbital Approach: Dynamics beyond the Born-Oppenheimer Approximation.
    Zhao L; Tao Z; Pavošević F; Wildman A; Hammes-Schiffer S; Li X
    J Phys Chem Lett; 2020 May; 11(10):4052-4058. PubMed ID: 32251589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition states, reaction paths, and thermochemistry using the nuclear-electronic orbital analytic Hessian.
    Schneider PE; Tao Z; Pavošević F; Epifanovsky E; Feng X; Hammes-Schiffer S
    J Chem Phys; 2021 Feb; 154(5):054108. PubMed ID: 33557565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic Born-Oppenheimer approximation in nuclear-electronic orbital dynamics.
    Li TE; Hammes-Schiffer S
    J Chem Phys; 2023 Mar; 158(11):114118. PubMed ID: 36948810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicomponent Orbital-Optimized Perturbation Theory with Density Fitting: Anharmonic Zero-Point Energies in Protonated Water Clusters.
    Fetherolf JH; Pavošević F; Tao Z; Hammes-Schiffer S
    J Phys Chem Lett; 2022 Jun; 13(24):5563-5570. PubMed ID: 35696537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Vibrational Frequencies within the Nuclear-Electronic Orbital Framework.
    Yang Y; Schneider PE; Culpitt T; Pavošević F; Hammes-Schiffer S
    J Phys Chem Lett; 2019 Mar; 10(6):1167-1172. PubMed ID: 30776246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of nuclear basis sets for multicomponent quantum chemistry methods.
    Yu Q; Pavošević F; Hammes-Schiffer S
    J Chem Phys; 2020 Jun; 152(24):244123. PubMed ID: 32610964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear-electronic orbital approach to quantization of protons in periodic electronic structure calculations.
    Xu J; Zhou R; Tao Z; Malbon C; Blum V; Hammes-Schiffer S; Kanai Y
    J Chem Phys; 2022 Jun; 156(22):224111. PubMed ID: 35705422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.