These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Regulation of constitutive cargo transport from the trans-Golgi network to plasma membrane by Golgi-localized G protein betagamma subunits. Irannejad R; Wedegaertner PB J Biol Chem; 2010 Oct; 285(42):32393-404. PubMed ID: 20720014 [TBL] [Abstract][Full Text] [Related]
3. Inducible Inhibition of Gβγ Reveals Localization-dependent Functions at the Plasma Membrane and Golgi. Klayman LM; Wedegaertner PB J Biol Chem; 2017 Feb; 292(5):1773-1784. PubMed ID: 27994056 [TBL] [Abstract][Full Text] [Related]
4. PAQR3 regulates Golgi vesicle fission and transport via the Gβγ-PKD signaling pathway. Hewavitharana T; Wedegaertner PB Cell Signal; 2015 Dec; 27(12):2444-51. PubMed ID: 26327583 [TBL] [Abstract][Full Text] [Related]
5. CaMKKβ-AMPKα2 signaling contributes to mitotic Golgi fragmentation and the G2/M transition in mammalian cells. Lee IJ; Lee CW; Lee JH Cell Cycle; 2015; 14(4):598-611. PubMed ID: 25590814 [TBL] [Abstract][Full Text] [Related]
6. Phospholipase C beta3 is a key component in the Gbetagamma/PKCeta/PKD-mediated regulation of trans-Golgi network to plasma membrane transport. Díaz Añel AM Biochem J; 2007 Aug; 406(1):157-65. PubMed ID: 17492941 [TBL] [Abstract][Full Text] [Related]
8. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane. Jensen DD; Zhao P; Jimenez-Vargas NN; Lieu T; Gerges M; Yeatman HR; Canals M; Vanner SJ; Poole DP; Bunnett NW J Biol Chem; 2016 May; 291(21):11285-99. PubMed ID: 27030010 [TBL] [Abstract][Full Text] [Related]
9. Tyrosine-phosphorylated extracellular signal--regulated kinase associates with the Golgi complex during G2/M phase of the cell cycle: evidence for regulation of Golgi structure. Cha H; Shapiro P J Cell Biol; 2001 Jun; 153(7):1355-67. PubMed ID: 11425867 [TBL] [Abstract][Full Text] [Related]
10. G-protein βγ subunits as multi-functional scaffolds and transducers in G-protein-coupled receptor signaling. Smrcka AV; Fisher I Cell Mol Life Sci; 2019 Nov; 76(22):4447-4459. PubMed ID: 31435698 [TBL] [Abstract][Full Text] [Related]
13. Regulation of G-protein signaling by RKTG via sequestration of the G betagamma subunit to the Golgi apparatus. Jiang Y; Xie X; Zhang Y; Luo X; Wang X; Fan F; Zheng D; Wang Z; Chen Y Mol Cell Biol; 2010 Jan; 30(1):78-90. PubMed ID: 19884349 [TBL] [Abstract][Full Text] [Related]
14. Protein kinase D and Gβγ mediate sustained nociceptive signaling by biased agonists of protease-activated receptor-2. Zhao P; Pattison LA; Jensen DD; Jimenez-Vargas NN; Latorre R; Lieu T; Jaramillo JO; Lopez-Lopez C; Poole DP; Vanner SJ; Schmidt BL; Bunnett NW J Biol Chem; 2019 Jul; 294(27):10649-10662. PubMed ID: 31142616 [TBL] [Abstract][Full Text] [Related]
15. Gbetagamma-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Jamora C; Yamanouye N; Van Lint J; Laudenslager J; Vandenheede JR; Faulkner DJ; Malhotra V Cell; 1999 Jul; 98(1):59-68. PubMed ID: 10412981 [TBL] [Abstract][Full Text] [Related]
16. JNK2 controls fragmentation of the Golgi complex and the G2/M transition through phosphorylation of GRASP65. Cervigni RI; Bonavita R; Barretta ML; Spano D; Ayala I; Nakamura N; Corda D; Colanzi A J Cell Sci; 2015 Jun; 128(12):2249-60. PubMed ID: 25948586 [TBL] [Abstract][Full Text] [Related]