These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 34260583)
1. MycoRed: Betalain pigments enable in vivo real-time visualisation of arbuscular mycorrhizal colonisation. Timoneda A; Yunusov T; Quan C; Gavrin A; Brockington SF; Schornack S PLoS Biol; 2021 Jul; 19(7):e3001326. PubMed ID: 34260583 [TBL] [Abstract][Full Text] [Related]
2. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. Zeng T; Holmer R; Hontelez J; Te Lintel-Hekkert B; Marufu L; de Zeeuw T; Wu F; Schijlen E; Bisseling T; Limpens E Plant J; 2018 May; 94(3):411-425. PubMed ID: 29570877 [TBL] [Abstract][Full Text] [Related]
3. Arbuscular mycorrhizal fungi possess a CLAVATA3/embryo surrounding region-related gene that positively regulates symbiosis. Le Marquer M; Bécard G; Frei Dit Frey N New Phytol; 2019 Apr; 222(2):1030-1042. PubMed ID: 30554405 [TBL] [Abstract][Full Text] [Related]
4. Host-Induced Gene Silencing of Arbuscular Mycorrhizal Fungal Genes via Agrobacterium rhizogenes-Mediated Root Transformation in Medicago truncatula. Hartmann M; Voß S; Requena N Methods Mol Biol; 2020; 2146():239-248. PubMed ID: 32415608 [TBL] [Abstract][Full Text] [Related]
6. Combining metabolomics and gene expression analysis reveals that propionyl- and butyryl-carnitines are involved in late stages of arbuscular mycorrhizal symbiosis. Laparre J; Malbreil M; Letisse F; Portais JC; Roux C; Bécard G; Puech-Pagès V Mol Plant; 2014 Mar; 7(3):554-66. PubMed ID: 24121293 [TBL] [Abstract][Full Text] [Related]
7. Cesium could be used as a proxy for potassium in mycorrhizal Kafle A; Garcia K Plant Signal Behav; 2022 Dec; 17(1):2134676. PubMed ID: 36259539 [TBL] [Abstract][Full Text] [Related]
8. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis. Aloui A; Recorbet G; Lemaître-Guillier C; Mounier A; Balliau T; Zivy M; Wipf D; Dumas-Gaudot E Mycorrhiza; 2018 Jan; 28(1):1-16. PubMed ID: 28725961 [TBL] [Abstract][Full Text] [Related]
9. Deep learning-based quantification of arbuscular mycorrhizal fungi in plant roots. Evangelisti E; Turner C; McDowell A; Shenhav L; Yunusov T; Gavrin A; Servante EK; Quan C; Schornack S New Phytol; 2021 Dec; 232(5):2207-2219. PubMed ID: 34449891 [TBL] [Abstract][Full Text] [Related]
11. RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization. Fiorilli V; Belmondo S; Khouja HR; Abbà S; Faccio A; Daghino S; Lanfranco L Mycorrhiza; 2016 Aug; 26(6):609-21. PubMed ID: 27075897 [TBL] [Abstract][Full Text] [Related]
12. A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis. An J; Zeng T; Ji C; de Graaf S; Zheng Z; Xiao TT; Deng X; Xiao S; Bisseling T; Limpens E; Pan Z New Phytol; 2019 Oct; 224(1):396-408. PubMed ID: 31148173 [TBL] [Abstract][Full Text] [Related]
13. Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis. Tsuzuki S; Handa Y; Takeda N; Kawaguchi M Mol Plant Microbe Interact; 2016 Apr; 29(4):277-86. PubMed ID: 26757243 [TBL] [Abstract][Full Text] [Related]
14. Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions. Seddas PM; Arias CM; Arnould C; van Tuinen D; Godfroy O; Benhassou HA; Gouzy J; Morandi D; Dessaint F; Gianinazzi-Pearson V Mol Plant Microbe Interact; 2009 Mar; 22(3):341-51. PubMed ID: 19245328 [TBL] [Abstract][Full Text] [Related]
15. Physiological and transcriptomic response of Medicago truncatula to colonization by high- or low-benefit arbuscular mycorrhizal fungi. Cope KR; Kafle A; Yakha JK; Pfeffer PE; Strahan GD; Garcia K; Subramanian S; Bücking H Mycorrhiza; 2022 Jul; 32(3-4):281-303. PubMed ID: 35511363 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Manthey K; Krajinski F; Hohnjec N; Firnhaber C; Pühler A; Perlick AM; Küster H Mol Plant Microbe Interact; 2004 Oct; 17(10):1063-77. PubMed ID: 15497399 [TBL] [Abstract][Full Text] [Related]
17. Effect of short-term aluminum stress and mycorrhizal inoculation on nitric oxide metabolism in Medicago truncatula roots. Sujkowska-Rybkowska M; Czarnocka W; Sańko-Sawczenko I; Witoń D J Plant Physiol; 2018 Jan; 220():145-154. PubMed ID: 29179082 [TBL] [Abstract][Full Text] [Related]
18. Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L. Hu Y; Wu S; Sun Y; Li T; Zhang X; Chen C; Lin G; Chen B Mycorrhiza; 2015 Feb; 25(2):131-42. PubMed ID: 25033924 [TBL] [Abstract][Full Text] [Related]
19. Towards the elucidation of AM-specific transcription in Medicago truncatula. Krajinski F; Frenzel A Phytochemistry; 2007 Jan; 68(1):75-81. PubMed ID: 17141285 [TBL] [Abstract][Full Text] [Related]
20. A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to label organelles, membranes and cytoskeletal elements in Medicago truncatula. Ivanov S; Harrison MJ Plant J; 2014 Dec; 80(6):1151-63. PubMed ID: 25329881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]