These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34260700)

  • 1. Openness weighted association studies: leveraging personal genome information to prioritize non-coding variants.
    Song S; Shan N; Wang G; Yan X; Liu JS; Hou L
    Bioinformatics; 2021 Dec; 37(24):4737-4743. PubMed ID: 34260700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Cell-Type Openness-Weighted Association Studies for Trait-Associated Genomic Segments Prioritization.
    Song S; Sun H; Liu JS; Hou L
    Genes (Basel); 2022 Jul; 13(7):. PubMed ID: 35886003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepPerVar: a multi-modal deep learning framework for functional interpretation of genetic variants in personal genome.
    Wang Y; Chen L
    Bioinformatics; 2022 Dec; 38(24):5340-5351. PubMed ID: 36271868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LSMM: a statistical approach to integrating functional annotations with genome-wide association studies.
    Ming J; Dai M; Cai M; Wan X; Liu J; Yang C
    Bioinformatics; 2018 Aug; 34(16):2788-2796. PubMed ID: 29608640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PALM: a powerful and adaptive latent model for prioritizing risk variants with functional annotations.
    Yu X; Xiao J; Cai M; Jiao Y; Wan X; Liu J; Yang C
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36744920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SigMod: an exact and efficient method to identify a strongly interconnected disease-associated module in a gene network.
    Liu Y; Brossard M; Roqueiro D; Margaritte-Jeannin P; Sarnowski C; Bouzigon E; Demenais F
    Bioinformatics; 2017 May; 33(10):1536-1544. PubMed ID: 28069594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LPM: a latent probit model to characterize the relationship among complex traits using summary statistics from multiple GWASs and functional annotations.
    Ming J; Wang T; Yang C
    Bioinformatics; 2020 Apr; 36(8):2506-2514. PubMed ID: 31860024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TiSAn: estimating tissue-specific effects of coding and non-coding variants.
    Vervier K; Michaelson JJ
    Bioinformatics; 2018 Sep; 34(18):3061-3068. PubMed ID: 29912365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide genetic analyses highlight mitogen-activated protein kinase (MAPK) signaling in the pathogenesis of endometriosis.
    Uimari O; Rahmioglu N; Nyholt DR; Vincent K; Missmer SA; Becker C; Morris AP; Montgomery GW; Zondervan KT
    Hum Reprod; 2017 Apr; 32(4):780-793. PubMed ID: 28333195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules.
    Yao X; Yan J; Liu K; Kim S; Nho K; Risacher SL; Greene CS; Moore JH; Saykin AJ; Shen L;
    Bioinformatics; 2017 Oct; 33(20):3250-3257. PubMed ID: 28575147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative Tissue-Specific Functional Annotations in the Human Genome Provide Novel Insights on Many Complex Traits and Improve Signal Prioritization in Genome Wide Association Studies.
    Lu Q; Powles RL; Wang Q; He BJ; Zhao H
    PLoS Genet; 2016 Apr; 12(4):e1005947. PubMed ID: 27058395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cgmisc: enhanced genome-wide association analyses and visualization.
    Kierczak M; Jabłońska J; Forsberg SK; Bianchi M; Tengvall K; Pettersson M; Scholz V; Meadows JR; Jern P; Carlborg Ö; Lindblad-Toh K
    Bioinformatics; 2015 Dec; 31(23):3830-1. PubMed ID: 26249815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TVAR: assessing tissue-specific functional effects of non-coding variants with deep learning.
    Yang H; Chen R; Wang Q; Wei Q; Ji Y; Zhong X; Li B
    Bioinformatics; 2022 Oct; 38(20):4697-4704. PubMed ID: 36063453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. parSMURF, a high-performance computing tool for the genome-wide detection of pathogenic variants.
    Petrini A; Mesiti M; Schubach M; Frasca M; Danis D; Re M; Grossi G; Cappelletti L; Castrignanò T; Robinson PN; Valentini G
    Gigascience; 2020 May; 9(5):. PubMed ID: 32444882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting deep transfer learning for the prediction of functional non-coding variants using genomic sequence.
    Chen L; Wang Y; Zhao F
    Bioinformatics; 2022 Jun; 38(12):3164-3172. PubMed ID: 35389435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPS: an empirical Bayes approach to integrating pleiotropy and tissue-specific information for prioritizing risk genes.
    Liu J; Wan X; Ma S; Yang C
    Bioinformatics; 2016 Jun; 32(12):1856-64. PubMed ID: 27153687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNPranker 2.0: a gene-centric data mining tool for diseases associated SNP prioritization in GWAS.
    Merelli I; Calabria A; Cozzi P; Viti F; Mosca E; Milanesi L
    BMC Bioinformatics; 2013; 14 Suppl 1(Suppl 1):S9. PubMed ID: 23369106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying functional impact of non-coding variants with multi-task Bayesian neural network.
    Xu C; Liu Q; Zhou J; Xie M; Feng J; Jiang T
    Bioinformatics; 2020 Mar; 36(5):1397-1404. PubMed ID: 31693090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint analysis of individual-level and summary-level GWAS data by leveraging pleiotropy.
    Dai M; Wan X; Peng H; Wang Y; Liu Y; Liu J; Xu Z; Yang C
    Bioinformatics; 2019 May; 35(10):1729-1736. PubMed ID: 30307540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.