These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 34260922)
21. The transgenic expression of LARGE exacerbates the muscle phenotype of dystroglycanopathy mice. Whitmore C; Fernandez-Fuente M; Booler H; Parr C; Kavishwar M; Ashraf A; Lacey E; Kim J; Terry R; Ackroyd MR; Wells KE; Muntoni F; Wells DJ; Brown SC Hum Mol Genet; 2014 Apr; 23(7):1842-55. PubMed ID: 24234655 [TBL] [Abstract][Full Text] [Related]
22. FKRP mutations cause congenital muscular dystrophy 1C and limb-girdle muscular dystrophy 2I in Asian patients. Awano H; Saito Y; Shimizu M; Sekiguchi K; Niijima S; Matsuo M; Maegaki Y; Izumi I; Kikuchi C; Ishibashi M; Okazaki T; Komaki H; Iijima K; Nishino I J Clin Neurosci; 2021 Oct; 92():215-221. PubMed ID: 34509255 [TBL] [Abstract][Full Text] [Related]
23. Expression in retinal neurons of fukutin and FKRP, the protein products of two dystroglycanopathy-causative genes. Haro C; Uribe ML; Quereda C; Cruces J; Martín-Nieto J Mol Vis; 2018; 24():43-58. PubMed ID: 29416295 [TBL] [Abstract][Full Text] [Related]
24. Phenotypic Spectrum of α-Dystroglycanopathies Associated With the c.919T>a Variant in the FKRP Gene in Humans and Mice. Brown SC; Fernandez-Fuente M; Muntoni F; Vissing J J Neuropathol Exp Neurol; 2020 Dec; 79(12):1257-1264. PubMed ID: 33051673 [TBL] [Abstract][Full Text] [Related]
25. Fukutin mutations in non-Japanese patients with congenital muscular dystrophy: less severe mutations predominate in patients with a non-Walker-Warburg phenotype. Yis U; Uyanik G; Heck PB; Smitka M; Nobel H; Ebinger F; Dirik E; Feng L; Kurul SH; Brocke K; Unalp A; Özer E; Cakmakci H; Sewry C; Cirak S; Muntoni F; Hehr U; Morris-Rosendahl DJ Neuromuscul Disord; 2011 Jan; 21(1):20-30. PubMed ID: 20961758 [TBL] [Abstract][Full Text] [Related]
26. Muscle and heart function restoration in a limb girdle muscular dystrophy 2I (LGMD2I) mouse model by systemic FKRP gene delivery. Qiao C; Wang CH; Zhao C; Lu P; Awano H; Xiao B; Li J; Yuan Z; Dai Y; Martin CB; Li J; Lu Q; Xiao X Mol Ther; 2014 Nov; 22(11):1890-9. PubMed ID: 25048216 [TBL] [Abstract][Full Text] [Related]
27. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Brockington M; Blake DJ; Prandini P; Brown SC; Torelli S; Benson MA; Ponting CP; Estournet B; Romero NB; Mercuri E; Voit T; Sewry CA; Guicheney P; Muntoni F Am J Hum Genet; 2001 Dec; 69(6):1198-209. PubMed ID: 11592034 [TBL] [Abstract][Full Text] [Related]
28. CRISPR-Cas9 KO Cell Line Generation and Development of a Cell-Based Potency Assay for rAAV-FKRP Gene Therapy. Geoffroy M; Pili L; Buffa V; Caroff M; Bigot A; Gicquel E; Rouby G; Richard I; Fragnoud R Cells; 2023 Oct; 12(20):. PubMed ID: 37887288 [TBL] [Abstract][Full Text] [Related]
29. Fukutin is prerequisite to ameliorate muscular dystrophic phenotype by myofiber-selective LARGE expression. Ohtsuka Y; Kanagawa M; Yu CC; Ito C; Chiyo T; Kobayashi K; Okada T; Takeda S; Toda T Sci Rep; 2015 Feb; 5():8316. PubMed ID: 25661440 [TBL] [Abstract][Full Text] [Related]
30. Missense mutations in β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Buysse K; Riemersma M; Powell G; van Reeuwijk J; Chitayat D; Roscioli T; Kamsteeg EJ; van den Elzen C; van Beusekom E; Blaser S; Babul-Hirji R; Halliday W; Wright GJ; Stemple DL; Lin YY; Lefeber DJ; van Bokhoven H Hum Mol Genet; 2013 May; 22(9):1746-54. PubMed ID: 23359570 [TBL] [Abstract][Full Text] [Related]
31. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan. Roscioli T; Kamsteeg EJ; Buysse K; Maystadt I; van Reeuwijk J; van den Elzen C; van Beusekom E; Riemersma M; Pfundt R; Vissers LE; Schraders M; Altunoglu U; Buckley MF; Brunner HG; Grisart B; Zhou H; Veltman JA; Gilissen C; Mancini GM; Delrée P; Willemsen MA; Ramadža DP; Chitayat D; Bennett C; Sheridan E; Peeters EA; Tan-Sindhunata GM; de Die-Smulders CE; Devriendt K; Kayserili H; El-Hashash OA; Stemple DL; Lefeber DJ; Lin YY; van Bokhoven H Nat Genet; 2012 May; 44(5):581-5. PubMed ID: 22522421 [TBL] [Abstract][Full Text] [Related]
32. Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Mercuri E; Messina S; Bruno C; Mora M; Pegoraro E; Comi GP; D'Amico A; Aiello C; Biancheri R; Berardinelli A; Boffi P; Cassandrini D; Laverda A; Moggio M; Morandi L; Moroni I; Pane M; Pezzani R; Pichiecchio A; Pini A; Minetti C; Mongini T; Mottarelli E; Ricci E; Ruggieri A; Saredi S; Scuderi C; Tessa A; Toscano A; Tortorella G; Trevisan CP; Uggetti C; Vasco G; Santorelli FM; Bertini E Neurology; 2009 May; 72(21):1802-9. PubMed ID: 19299310 [TBL] [Abstract][Full Text] [Related]
33. A limb-girdle muscular dystrophy 2I model of muscular dystrophy identifies corrective drug compounds for dystroglycanopathies. Serafini PR; Feyder MJ; Hightower RM; Garcia-Perez D; Vieira NM; Lek A; Gibbs DE; Moukha-Chafiq O; Augelli-Szafran CE; Kawahara G; Widrick JJ; Kunkel LM; Alexander MS JCI Insight; 2018 Sep; 3(18):. PubMed ID: 30232282 [TBL] [Abstract][Full Text] [Related]
34. Muscular dystrophies due to defective glycosylation of dystroglycan. Muntoni F; Brockington M; Godfrey C; Ackroyd M; Robb S; Manzur A; Kinali M; Mercuri E; Kaluarachchi M; Feng L; Jimenez-Mallebrera C; Clement E; Torelli S; Sewry CA; Brown SC Acta Myol; 2007 Dec; 26(3):129-35. PubMed ID: 18646561 [TBL] [Abstract][Full Text] [Related]
35. Glyc-O-genetics of Walker-Warburg syndrome. van Reeuwijk J; Brunner HG; van Bokhoven H Clin Genet; 2005 Apr; 67(4):281-9. PubMed ID: 15733261 [TBL] [Abstract][Full Text] [Related]
37. POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome. van Reeuwijk J; Janssen M; van den Elzen C; Beltran-Valero de Bernabé D; Sabatelli P; Merlini L; Boon M; Scheffer H; Brockington M; Muntoni F; Huynen MA; Verrips A; Walsh CA; Barth PG; Brunner HG; van Bokhoven H J Med Genet; 2005 Dec; 42(12):907-12. PubMed ID: 15894594 [TBL] [Abstract][Full Text] [Related]
38. The role of defective glycosylation in congenital muscular dystrophy. Schachter H; Vajsar J; Zhang W Glycoconj J; 2004; 20(5):291-300. PubMed ID: 15229394 [TBL] [Abstract][Full Text] [Related]
39. FKRP-dependent glycosylation of fibronectin regulates muscle pathology in muscular dystrophy. Wood AJ; Lin CH; Li M; Nishtala K; Alaei S; Rossello F; Sonntag C; Hersey L; Miles LB; Krisp C; Dudczig S; Fulcher AJ; Gibertini S; Conroy PJ; Siegel A; Mora M; Jusuf P; Packer NH; Currie PD Nat Commun; 2021 May; 12(1):2951. PubMed ID: 34012031 [TBL] [Abstract][Full Text] [Related]
40. Clinical and molecular characterization of patients with limb-girdle muscular dystrophy type 2I. Boito CA; Melacini P; Vianello A; Prandini P; Gavassini BF; Bagattin A; Siciliano G; Angelini C; Pegoraro E Arch Neurol; 2005 Dec; 62(12):1894-9. PubMed ID: 16344347 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]