BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34261205)

  • 1. Prediction and analysis of redox-sensitive cysteines using machine learning and statistical methods.
    Keßler M; Wittig I; Ackermann J; Koch I
    Biol Chem; 2021 Jul; 402(8):925-935. PubMed ID: 34261205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features.
    Sun MA; Zhang Q; Wang Y; Ge W; Guo D
    BMC Bioinformatics; 2016 Aug; 17(1):316. PubMed ID: 27553667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying Redox-Sensitive Cysteine Residues in Mitochondria.
    Kisty EA; Saart EC; Weerapana E
    Antioxidants (Basel); 2023 Apr; 12(5):. PubMed ID: 37237858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gel-based fluorescent proteomic tools for investigating cell redox signaling. A mini-review.
    Majewska AM; Mostek A
    Electrophoresis; 2021 Jul; 42(12-13):1378-1387. PubMed ID: 33783010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Global Profile of Reversible and Irreversible Cysteine Redox Post-Translational Modifications During Myocardial Ischemia/Reperfusion Injury and Antioxidant Intervention.
    Rookyard AW; Paulech J; Thyssen S; Liddy KA; Puckeridge M; Li DK; White MY; Cordwell SJ
    Antioxid Redox Signal; 2021 Jan; 34(1):11-31. PubMed ID: 32729339
    [No Abstract]   [Full Text] [Related]  

  • 7. Automating Assignment, Quantitation, and Biological Annotation of Redox Proteomics Datasets with ProteoSushi.
    van der Post S; Seymour RW; Mooradian AD; Held JM
    Methods Mol Biol; 2022; 2399():61-84. PubMed ID: 35604553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-Based Prediction of Cysteine Reactivity Using Machine Learning.
    Wang H; Chen X; Li C; Liu Y; Yang F; Wang C
    Biochemistry; 2018 Jan; 57(4):451-460. PubMed ID: 29072073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox proteomics: identification of oxidatively modified proteins.
    Ghezzi P; Bonetto V
    Proteomics; 2003 Jul; 3(7):1145-53. PubMed ID: 12872215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteines under ROS attack in plants: a proteomics view.
    Akter S; Huang J; Waszczak C; Jacques S; Gevaert K; Van Breusegem F; Messens J
    J Exp Bot; 2015 May; 66(10):2935-44. PubMed ID: 25750420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in mass spectrometry-based methods to investigate reversible cysteine oxidation.
    Stair ER; Hicks LM
    Curr Opin Chem Biol; 2023 Dec; 77():102389. PubMed ID: 37776664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPEAR: A proteomics approach for simultaneous protein expression and redox analysis.
    Doron S; Lampl N; Savidor A; Katina C; Gabashvili A; Levin Y; Rosenwasser S
    Free Radic Biol Med; 2021 Nov; 176():366-377. PubMed ID: 34619326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
    Wani R; Murray BW
    Methods Mol Biol; 2017; 1558():191-212. PubMed ID: 28150239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cysTMTRAQ-An integrative method for unbiased thiol-based redox proteomics.
    Parker J; Balmant K; Zhu F; Zhu N; Chen S
    Mol Cell Proteomics; 2015 Jan; 14(1):237-42. PubMed ID: 25316711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.
    Boronat S; García-Santamarina S; Hidalgo E
    Free Radic Res; 2015 May; 49(5):494-510. PubMed ID: 25782062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox Proteomics Applied to the Thiol Secretome.
    Ghezzi P; Chan P
    Antioxid Redox Signal; 2017 Mar; 26(7):299-312. PubMed ID: 27139336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome.
    Paulech J; Solis N; Edwards AV; Puckeridge M; White MY; Cordwell SJ
    Anal Chem; 2013 Apr; 85(7):3774-80. PubMed ID: 23438843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SP3-Enabled Rapid and High Coverage Chemoproteomic Identification of Cell-State-Dependent Redox-Sensitive Cysteines.
    Desai HS; Yan T; Yu F; Sun AW; Villanueva M; Nesvizhskii AI; Backus KM
    Mol Cell Proteomics; 2022 Apr; 21(4):100218. PubMed ID: 35219905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle.
    Kramer PA; Duan J; Gaffrey MJ; Shukla AK; Wang L; Bammler TK; Qian WJ; Marcinek DJ
    Redox Biol; 2018 Jul; 17():367-376. PubMed ID: 29857311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.