These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 34262015)
41. In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range. Marchand PJ; Szlag D; Bouwens A; Lasser T J Biomed Opt; 2018 Mar; 23(3):1-7. PubMed ID: 29575831 [TBL] [Abstract][Full Text] [Related]
42. Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos. Karnowski K; Ajduk A; Wieloch B; Tamborski S; Krawiec K; Wojtkowski M; Szkulmowski M Sci Rep; 2017 Jun; 7(1):4165. PubMed ID: 28646146 [TBL] [Abstract][Full Text] [Related]
43. Visible-near infrared-II skull optical clearing window for in vivo cortical vasculature imaging and targeted manipulation. Li DY; Zheng Z; Yu TT; Tang BZ; Fei P; Qian J; Zhu D J Biophotonics; 2020 Oct; 13(10):e202000142. PubMed ID: 32589789 [TBL] [Abstract][Full Text] [Related]
44. Optical window preparation for two-photon imaging of microglia in mice. Nimmerjahn A Cold Spring Harb Protoc; 2012 May; 2012(5):. PubMed ID: 22550298 [TBL] [Abstract][Full Text] [Related]
45. Quantitative imaging of microvascular blood flow networks in deep cortical layers by 1310 nm μODT. You J; Zhang Q; Park K; Du C; Pan Y Opt Lett; 2015 Sep; 40(18):4293-6. PubMed ID: 26371919 [TBL] [Abstract][Full Text] [Related]
46. Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy. Zhou C; Wang Y; Aguirre AD; Tsai TH; Cohen DW; Connolly JL; Fujimoto JG J Biomed Opt; 2010; 15(1):016001. PubMed ID: 20210448 [TBL] [Abstract][Full Text] [Related]
47. Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy. Wan S; Lee HC; Huang X; Xu T; Xu T; Zeng X; Zhang Z; Sheikine Y; Connolly JL; Fujimoto JG; Zhou C Med Image Anal; 2017 May; 38():104-116. PubMed ID: 28327449 [TBL] [Abstract][Full Text] [Related]
48. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging. Chen W; You J; Gu X; Du C; Pan Y Sci Rep; 2016 Dec; 6():38786. PubMed ID: 27934907 [TBL] [Abstract][Full Text] [Related]
49. Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull. Yoon S; Lee H; Hong JH; Lim YS; Choi W Nat Commun; 2020 Nov; 11(1):5721. PubMed ID: 33184297 [TBL] [Abstract][Full Text] [Related]
50. Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain. Tamborski S; Lyu HC; Dolezyczek H; Malinowska M; Wilczynski G; Szlag D; Lasser T; Wojtkowski M; Szkulmowski M Biomed Opt Express; 2016 Nov; 7(11):4400-4414. PubMed ID: 27895982 [TBL] [Abstract][Full Text] [Related]
51. Self-phase-modulated femtosecond laser source at 1603 nm and its application to deep-brain 3-photon microscopy in vivo. Chen X; Cheng H; Deng X; Tong S; Li J; Qiu P; Wang K J Biophotonics; 2021 Mar; 14(3):e202000349. PubMed ID: 33179837 [TBL] [Abstract][Full Text] [Related]
52. Visualizing the "sandwich" structure of osteocytes in their native environment deep in bone in vivo. Wang K; Du Y; Liu H; Gan M; Tong S; Wen W; Zhuang Z; Qiu P J Biophotonics; 2019 Apr; 12(4):e201800360. PubMed ID: 30421510 [TBL] [Abstract][Full Text] [Related]
53. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT. Kumar A; Kamali T; Platzer R; Unterhuber A; Drexler W; Leitgeb RA Biomed Opt Express; 2015 Apr; 6(4):1124-34. PubMed ID: 25908999 [TBL] [Abstract][Full Text] [Related]
54. Exchange transfusion with fluorocarbon for studying synaptically evoked optical signal in rat cortex. Nomura Y; Fujii F; Sato C; Nemoto M; Tamura M Brain Res Brain Res Protoc; 2000 Feb; 5(1):10-5. PubMed ID: 10719260 [TBL] [Abstract][Full Text] [Related]
55. Dual GRIN lens two-photon endoscopy for high-speed volumetric and deep brain imaging. Chien YF; Lin JY; Yeh PT; Hsu KJ; Tsai YH; Chen SK; Chu SW Biomed Opt Express; 2021 Jan; 12(1):162-172. PubMed ID: 33659072 [TBL] [Abstract][Full Text] [Related]
57. Dictionary learning-based reverberation removal enables depth-resolved photoacoustic microscopy of cortical microvasculature in the mouse brain. Govinahallisathyanarayana S; Ning B; Cao R; Hu S; Hossack JA Sci Rep; 2018 Jan; 8(1):985. PubMed ID: 29343801 [TBL] [Abstract][Full Text] [Related]
58. En face speckle reduction in optical coherence microscopy by frequency compounding. Magnain C; Wang H; Sakadžić S; Fischl B; Boas DA Opt Lett; 2016 May; 41(9):1925-8. PubMed ID: 27128040 [TBL] [Abstract][Full Text] [Related]
59. High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. Aguirre AD; Hsiung P; Ko TH; Hartl I; Fujimoto JG Opt Lett; 2003 Nov; 28(21):2064-6. PubMed ID: 14587816 [TBL] [Abstract][Full Text] [Related]
60. Scalable Labeling for Cytoarchitectonic Characterization of Large Optically Cleared Human Neocortex Samples. Hildebrand S; Schueth A; Herrler A; Galuske R; Roebroeck A Sci Rep; 2019 Jul; 9(1):10880. PubMed ID: 31350519 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]