These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 34262073)

  • 1. Strain hardening recovery mediated by coherent precipitates in lightweight steel.
    Kim SD; Park SJ; Jang JH; Moon J; Ha HY; Lee CH; Park H; Shin JH; Lee TH
    Sci Rep; 2021 Jul; 11(1):14468. PubMed ID: 34262073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of dislocation plasticity in high-Mn lightweight steel by in-situ TEM.
    Kim SD; Park JY; Park SJ; Jang JH; Moon J; Ha HY; Lee CH; Kang JY; Shin JH; Lee TH
    Sci Rep; 2019 Oct; 9(1):15171. PubMed ID: 31645600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of strain-hardening rate in Ni-Si alloys.
    Yang CL; Zhang ZJ; Cai T; Zhang P; Zhang ZF
    Sci Rep; 2015 Oct; 5():15532. PubMed ID: 26487419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Pretreatment and Cryogenic Temperatures on Mechanical Properties and Microstructure of Al-Cu-Li Alloy.
    Wang C; Zhang J; Yi Y; Zhu C
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength.
    Peng S; Wei Y; Gao H
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5204-5209. PubMed ID: 32094194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rebuilding the Strain Hardening at a Large Strain in Twinned Au Nanowires.
    Sun J; Han J; Yang Z; Liu H; Song D; Ma A; Fang L
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30340344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the Dislocation Substructure Parameters of Hadfield Steel on Its Strain Hardening.
    Russakova A; Zhilkashinova A; Alontseva D; Abilev M; Khozhanov A; Zhilkashinova A
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of V Addition on the Deformation Mechanism and Mechanical Properties of Non-Equiatomic CoCrNi Medium-Entropy Alloys.
    Shen R; Ni Z; Peng S; Yan H; Tian Y
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
    Jiang S; Wang H; Wu Y; Liu X; Chen H; Yao M; Gault B; Ponge D; Raabe D; Hirata A; Chen M; Wang Y; Lu Z
    Nature; 2017 Apr; 544(7651):460-464. PubMed ID: 28397822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strengthening Mechanism of a Single Precipitate in a Metallic Nanocube.
    Kiani MT; Wang Y; Bertin N; Cai W; Gu XW
    Nano Lett; 2019 Jan; 19(1):255-260. PubMed ID: 30525680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multislice image simulations of sheared needle-like precipitates in an Al-Mg-Si alloy.
    Christiansen E; Ringdalen IG; BjØrge R; Marioara CD; Holmestad R
    J Microsc; 2020 Sep; 279(3):265-273. PubMed ID: 32400899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure Characteristics, Mechanical Properties and Strain Hardening Behavior of B2 Intermetallic Compound-Strengthening Fe-16Mn-9Al-0.8C-3Ni Steel Fabricated by Twin-Roll Strip Casting, Cold Rolling and Annealing.
    Zhang B; Yang K; Zhang X; Liu H; Zhang W; Wang J
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alloy Partitioning Effect on Strength and Toughness of κ-Carbide Strengthened Steels.
    Field DM; Limmer KR; Hornbuckle BC; Pierce DT; Moore KE; Sebeck KM
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fe-Al-Mn-C lightweight structural alloys: a review on the microstructures and mechanical properties.
    Kim H; Suh DW; Kim NJ
    Sci Technol Adv Mater; 2013 Feb; 14(1):014205. PubMed ID: 27877553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shearing brittle intermetallics enhances cryogenic strength and ductility of steels.
    Wang F; Song M; Elkot MN; Yao N; Sun B; Song M; Wang Z; Raabe D
    Science; 2024 May; 384(6699):1017-1022. PubMed ID: 38815014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure, Tensile, and Fatigue Properties of Large-Scale Austenitic Lightweight Steel.
    Shin JH; Song JY; Kim SD; Park SJ; Ma YW; Lee JW
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing instability for work hardening in multi-principal element alloys.
    Xu B; Duan H; Chen X; Wang J; Ma Y; Jiang P; Yuan F; Wang Y; Ren Y; Du K; Wei Y; Wu X
    Nat Mater; 2024 Jun; 23(6):755-761. PubMed ID: 38605195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of Fe-Mn-Al-C Steels after Gleeble Simulations and Hot-Rolling.
    Sozańska-Jędrasik L; Mazurkiewicz J; Matus K; Borek W
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32041206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origins of high hardening and low ductility in magnesium.
    Wu Z; Curtin WA
    Nature; 2015 Oct; 526(7571):62-7. PubMed ID: 26390153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile Behaviors and Strain Hardening Mechanisms in a High-Mn Steel with Heterogeneous Microstructure.
    Zhang S; Liu Y; Wang J; Qin S; Wu X; Yuan F
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.