These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34262082)

  • 1. Aerosol microphysics and chemistry reveal the COVID19 lockdown impact on urban air quality.
    Eleftheriadis K; Gini MI; Diapouli E; Vratolis S; Vasilatou V; Fetfatzis P; Manousakas MI
    Sci Rep; 2021 Jul; 11(1):14477. PubMed ID: 34262082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of primary emissions and secondary aerosol formation on air pollution in an urban area of China during the COVID-19 lockdown.
    Tian J; Wang Q; Zhang Y; Yan M; Liu H; Zhang N; Ran W; Cao J
    Environ Int; 2021 May; 150():106426. PubMed ID: 33578069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causes and consequences of decreasing atmospheric organic aerosol in the United States.
    Ridley DA; Heald CL; Ridley KJ; Kroll JH
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):290-295. PubMed ID: 29279369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-wise analysis of the COVID-19 lockdown impact on aerosol, radiation and trace gases and associated chemistry in a tropical rural environment.
    Jain CD; Madhavan BL; Singh V; Prasad P; Sai Krishnaveni A; Ravi Kiran V; Venkat Ratnam M
    Environ Res; 2021 Mar; 194():110665. PubMed ID: 33359673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Analysis of the impact of two typical air pollution events on the air quality of Nanjing].
    Wang F; Zhu B; Kang HQ; Gao JH; Wang Y; Jiang Q
    Huan Jing Ke Xue; 2012 Oct; 33(10):3647-55. PubMed ID: 23234001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in chemical composition and sources of PM
    Manchanda C; Kumar M; Singh V; Faisal M; Hazarika N; Shukla A; Lalchandani V; Goel V; Thamban N; Ganguly D; Tripathi SN
    Environ Int; 2021 Aug; 153():106541. PubMed ID: 33845290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snapshots of wintertime urban aerosol characteristics: Local sources emphasized in ultrafine particle number and lung deposited surface area.
    Lepistö T; Barreira LMF; Helin A; Niemi JV; Kuittinen N; Lintusaari H; Silvonen V; Markkula L; Manninen HE; Timonen H; Jalava P; Saarikoski S; Rönkkö T
    Environ Res; 2023 Aug; 231(Pt 1):116068. PubMed ID: 37149021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.
    Tkacik DS; Lambe AT; Jathar S; Li X; Presto AA; Zhao Y; Blake D; Meinardi S; Jayne JT; Croteau PL; Robinson AL
    Environ Sci Technol; 2014 Oct; 48(19):11235-42. PubMed ID: 25188317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PM
    Dhaka SK; Chetna ; Kumar V; Panwar V; Dimri AP; Singh N; Patra PK; Matsumi Y; Takigawa M; Nakayama T; Yamaji K; Kajino M; Misra P; Hayashida S
    Sci Rep; 2020 Aug; 10(1):13442. PubMed ID: 32778673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece.
    Paraskevopoulou D; Liakakou E; Gerasopoulos E; Mihalopoulos N
    Sci Total Environ; 2015 Sep; 527-528():165-78. PubMed ID: 25958364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chemical cocktail during the COVID-19 outbreak in Beijing, China: Insights from six-year aerosol particle composition measurements during the Chinese New Year holiday.
    Sun Y; Lei L; Zhou W; Chen C; He Y; Sun J; Li Z; Xu W; Wang Q; Ji D; Fu P; Wang Z; Worsnop DR
    Sci Total Environ; 2020 Nov; 742():140739. PubMed ID: 32721760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal characterization of aerosol composition and sources in a polluted city in Central China.
    Wang Q; Li J; Yang J; Chen Y; Li Y; Li S; Xie C; Chen C; Wang L; Wang L; Wang W; Tong S; Sun Y
    Chemosphere; 2020 Nov; 258():127310. PubMed ID: 32947673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of Covid-19 lockdown on airborne particulate matter in Rome, Italy: A magnetic point of view.
    Winkler A; Amoroso A; Di Giosa A; Marchegiani G
    Environ Pollut; 2021 Dec; 291():118191. PubMed ID: 34547660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C1-C2 alkyl aminiums in urban aerosols: Insights from ambient and fuel combustion emission measurements in the Yangtze River Delta region of China.
    Shen W; Ren L; Zhao Y; Zhou L; Dai L; Ge X; Kong S; Yan Q; Xu H; Jiang Y; He J; Chen M; Yu H
    Environ Pollut; 2017 Nov; 230():12-21. PubMed ID: 28641196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced photochemical formation of secondary organic aerosols during the COVID-19 lockdown in Northern China.
    Meng J; Li Z; Zhou R; Chen M; Li Y; Yi Y; Ding Z; Li H; Yan L; Hou Z; Wang G
    Sci Total Environ; 2021 Mar; 758():143709. PubMed ID: 33223177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions.
    Sokhi RS; Singh V; Querol X; Finardi S; Targino AC; Andrade MF; Pavlovic R; Garland RM; Massagué J; Kong S; Baklanov A; Ren L; Tarasova O; Carmichael G; Peuch VH; Anand V; Arbilla G; Badali K; Beig G; Belalcazar LC; Bolignano A; Brimblecombe P; Camacho P; Casallas A; Charland JP; Choi J; Chourdakis E; Coll I; Collins M; Cyrys J; da Silva CM; Di Giosa AD; Di Leo A; Ferro C; Gavidia-Calderon M; Gayen A; Ginzburg A; Godefroy F; Gonzalez YA; Guevara-Luna M; Haque SM; Havenga H; Herod D; Hõrrak U; Hussein T; Ibarra S; Jaimes M; Kaasik M; Khaiwal R; Kim J; Kousa A; Kukkonen J; Kulmala M; Kuula J; La Violette N; Lanzani G; Liu X; MacDougall S; Manseau PM; Marchegiani G; McDonald B; Mishra SV; Molina LT; Mooibroek D; Mor S; Moussiopoulos N; Murena F; Niemi JV; Noe S; Nogueira T; Norman M; Pérez-Camaño JL; Petäjä T; Piketh S; Rathod A; Reid K; Retama A; Rivera O; Rojas NY; Rojas-Quincho JP; San José R; Sánchez O; Seguel RJ; Sillanpää S; Su Y; Tapper N; Terrazas A; Timonen H; Toscano D; Tsegas G; Velders GJM; Vlachokostas C; von Schneidemesser E; Vpm R; Yadav R; Zalakeviciute R; Zavala M
    Environ Int; 2021 Dec; 157():106818. PubMed ID: 34425482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in air quality in-taxis and in working conditions of taxi drivers pre- and post-lockdown, during the COVID-19 pandemic in the Paris area.
    Hachem M; Bensefa-Colas L; Momas I
    Indoor Air; 2022 Jan; 32(1):e12967. PubMed ID: 34866247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significantly underestimated traffic-related ammonia emissions in Chinese megacities: Evidence from satellite observations during COVID-19 lockdowns.
    Chen P; Wang Q; Shao M; Liu R
    Chemosphere; 2024 Aug; 361():142497. PubMed ID: 38825248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.