These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34262213)

  • 1. Real-time optimal quantum control of mechanical motion at room temperature.
    Magrini L; Rosenzweig P; Bach C; Deutschmann-Olek A; Hofer SG; Hong S; Kiesel N; Kugi A; Aspelmeyer M
    Nature; 2021 Jul; 595(7867):373-377. PubMed ID: 34262213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum control of a nanoparticle optically levitated in cryogenic free space.
    Tebbenjohanns F; Mattana ML; Rossi M; Frimmer M; Novotny L
    Nature; 2021 Jul; 595(7867):378-382. PubMed ID: 34262214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser cooling of a nanomechanical oscillator into its quantum ground state.
    Chan J; Alegre TP; Safavi-Naeini AH; Hill JT; Krause A; Gröblacher S; Aspelmeyer M; Painter O
    Nature; 2011 Oct; 478(7367):89-92. PubMed ID: 21979049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sideband cooling of micromechanical motion to the quantum ground state.
    Teufel JD; Donner T; Li D; Harlow JW; Allman MS; Cicak K; Sirois AJ; Whittaker JD; Lehnert KW; Simmonds RW
    Nature; 2011 Jul; 475(7356):359-63. PubMed ID: 21734657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement-based control of a mechanical oscillator at its thermal decoherence rate.
    Wilson DJ; Sudhir V; Piro N; Schilling R; Ghadimi A; Kippenberg TJ
    Nature; 2015 Aug; 524(7565):325-9. PubMed ID: 26258303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback Cooling of a Room Temperature Mechanical Oscillator close to its Motional Ground State.
    Guo J; Norte R; Gröblacher S
    Phys Rev Lett; 2019 Nov; 123(22):223602. PubMed ID: 31868423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooling of a levitated nanoparticle to the motional quantum ground state.
    Delić U; Reisenbauer M; Dare K; Grass D; Vuletić V; Kiesel N; Aspelmeyer M
    Science; 2020 Feb; 367(6480):892-895. PubMed ID: 32001522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum-enhanced sensing of a single-ion mechanical oscillator.
    McCormick KC; Keller J; Burd SC; Wineland DJ; Wilson AC; Leibfried D
    Nature; 2019 Aug; 572(7767):86-90. PubMed ID: 31332388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum back-action-evading measurement of motion in a negative mass reference frame.
    Møller CB; Thomas RA; Vasilakis G; Zeuthen E; Tsaturyan Y; Balabas M; Jensen K; Schliesser A; Hammerer K; Polzik ES
    Nature; 2017 Jul; 547(7662):191-195. PubMed ID: 28703182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooling-by-measurement and mechanical state tomography via pulsed optomechanics.
    Vanner MR; Hofer J; Cole GD; Aspelmeyer M
    Nat Commun; 2013; 4():2295. PubMed ID: 23945768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.
    Wollman EE; Lei CU; Weinstein AJ; Suh J; Kronwald A; Marquardt F; Clerk AA; Schwab KC
    Science; 2015 Aug; 349(6251):952-5. PubMed ID: 26315431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cavity cooling of an optically levitated submicron particle.
    Kiesel N; Blaser F; Delić U; Grass D; Kaltenbaek R; Aspelmeyer M
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):14180-5. PubMed ID: 23940352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement-based quantum control of mechanical motion.
    Rossi M; Mason D; Chen J; Tsaturyan Y; Schliesser A
    Nature; 2018 Nov; 563(7729):53-58. PubMed ID: 30382202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motional Sideband Asymmetry of a Nanoparticle Optically Levitated in Free Space.
    Tebbenjohanns F; Frimmer M; Jain V; Windey D; Novotny L
    Phys Rev Lett; 2020 Jan; 124(1):013603. PubMed ID: 31976693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and detection of a mechanical resonator near the ground state of motion.
    Rocheleau T; Ndukum T; Macklin C; Hertzberg JB; Clerk AA; Schwab KC
    Nature; 2010 Jan; 463(7277):72-5. PubMed ID: 20010604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanometre-scale displacement sensing using a single electron transistor.
    Knobel RG; Cleland AN
    Nature; 2003 Jul; 424(6946):291-3. PubMed ID: 12867975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable all-optical cold damping of levitated nanoparticles.
    Vijayan J; Zhang Z; Piotrowski J; Windey D; van der Laan F; Frimmer M; Novotny L
    Nat Nanotechnol; 2023 Jan; 18(1):49-54. PubMed ID: 36411375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong thermomechanical squeezing via weak measurement.
    Szorkovszky A; Brawley GA; Doherty AC; Bowen WP
    Phys Rev Lett; 2013 May; 110(18):184301. PubMed ID: 23683200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photon-by-photon feedback control of a single-atom trajectory.
    Kubanek A; Koch M; Sames C; Ourjoumtsev A; Pinkse PW; Murr K; Rempe G
    Nature; 2009 Dec; 462(7275):898-901. PubMed ID: 20016597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large Quantum Delocalization of a Levitated Nanoparticle Using Optimal Control: Applications for Force Sensing and Entangling via Weak Forces.
    Weiss T; Roda-Llordes M; Torrontegui E; Aspelmeyer M; Romero-Isart O
    Phys Rev Lett; 2021 Jul; 127(2):023601. PubMed ID: 34296896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.