BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 3426229)

  • 1. Quinone toxicity in hepatocytes: studies on mitochondrial Ca2+ release induced by benzoquinone derivatives.
    Moore GA; Rossi L; Nicotera P; Orrenius S; O'Brien PJ
    Arch Biochem Biophys; 1987 Dec; 259(2):283-95. PubMed ID: 3426229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of sulfhydryl groups in benzoquinone-induced Ca2+ release by rat liver mitochondria.
    Moore GA; Weis M; Orrenius S; O'Brien PJ
    Arch Biochem Biophys; 1988 Dec; 267(2):539-50. PubMed ID: 3214168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinone toxicity in hepatocytes without oxidative stress.
    Rossi L; Moore GA; Orrenius S; O'Brien PJ
    Arch Biochem Biophys; 1986 Nov; 251(1):25-35. PubMed ID: 3789732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quinone imine-induced Ca2+ release from isolated rat liver mitochondria.
    Weis M; Moore GA; Cotgreave IA; Nelson SD; Moldeus P
    Chem Biol Interact; 1990; 76(2):227-40. PubMed ID: 2225230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Menadione (2-methyl-1,4-naphthoquinone)-induced Ca2+ release from rat-liver mitochondria is caused by NAD(P)H oxidation.
    Moore GA; O'Brien PJ; Orrenius S
    Xenobiotica; 1986 Sep; 16(9):873-82. PubMed ID: 3020812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-acetyl-p-benzoquinone imine induces Ca2+ release from mitochondria by stimulating pyridine nucleotide hydrolysis.
    Weis M; Kass GE; Orrenius S; Moldéus P
    J Biol Chem; 1992 Jan; 267(2):804-9. PubMed ID: 1730671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Menadione- (2-methyl-1,4-naphthoquinone-) dependent enzymatic redox cycling and calcium release by mitochondria.
    Frei B; Winterhalter KH; Richter C
    Biochemistry; 1986 Jul; 25(15):4438-43. PubMed ID: 3092856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyridine-nucleotide oxidation, Ca2+ cycling and membrane damage during tert-butyl hydroperoxide metabolism by rat-liver mitochondria.
    Bellomo G; Martino A; Richelmi P; Moore GA; Jewell SA; Orrenius S
    Eur J Biochem; 1984 Apr; 140(1):1-6. PubMed ID: 6705788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diaziquone-induced cytotoxicity in isolated rat hepatocytes.
    Silva JM; O'Brien PJ
    Cancer Res; 1989 Oct; 49(20):5550-4. PubMed ID: 2790779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells.
    Ludewig G; Dogra S; Glatt H
    Environ Health Perspect; 1989 Jul; 82():223-8. PubMed ID: 2792044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of hepatocyte protein kinase C by redox-cycling quinones.
    Kass GE; Duddy SK; Orrenius S
    Biochem J; 1989 Jun; 260(2):499-507. PubMed ID: 2764885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF
    Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hypophysectomy and administration of growth and thyroid hormones on the hydroperoxide-induced calcium release process and glutathione levels in rat liver mitochondria.
    Rapuano BE; Maddaiah VT
    Arch Biochem Biophys; 1988 Jan; 260(1):359-76. PubMed ID: 3341749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The toxicity of acetaminophen and N-acetyl-p-benzoquinone imine in isolated hepatocytes is associated with thiol depletion and increased cytosolic Ca2+.
    Moore M; Thor H; Moore G; Nelson S; Moldéus P; Orrenius S
    J Biol Chem; 1985 Oct; 260(24):13035-40. PubMed ID: 2932433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interconversion of NAD(H) to NADP(H). A cellular response to quinone-induced oxidative stress in isolated hepatocytes.
    Stubberfield CR; Cohen GM
    Biochem Pharmacol; 1989 Aug; 38(16):2631-7. PubMed ID: 2764986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further characterization of the events involved in mitochondrial Ca2+ release and pore formation by prooxidants.
    Weis M; Kass GE; Orrenius S
    Biochem Pharmacol; 1994 Jun; 47(12):2147-56. PubMed ID: 7518235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of quantitative structure-toxicity relationships for the comparison of the cytotoxicity of 14 p-benzoquinone congeners in primary cultured rat hepatocytes versus PC12 cells.
    Siraki AG; Chan TS; O'Brien PJ
    Toxicol Sci; 2004 Sep; 81(1):148-59. PubMed ID: 15178806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of glutathione in the retention of Ca2+ by liver mitochondria.
    Beatrice MC; Stiers DL; Pfeiffer DR
    J Biol Chem; 1984 Jan; 259(2):1279-87. PubMed ID: 6693385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of redox cycling versus arylation in quinone-induced mitochondrial dysfunction: a mechanistic approach in classifying reactive toxicants.
    Henry TR; Wallace KB
    SAR QSAR Environ Res; 1995; 4(2-3):97-108. PubMed ID: 8765905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of alloxan-induced calcium release from rat liver mitochondria.
    Frei B; Winterhalter KH; Richter C
    J Biol Chem; 1985 Jun; 260(12):7394-401. PubMed ID: 3158657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.