BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 34262632)

  • 1. Inertial microfluidics in contraction-expansion microchannels: A review.
    Jiang D; Ni C; Tang W; Huang D; Xiang N
    Biomicrofluidics; 2021 Jul; 15(4):041501. PubMed ID: 34262632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Secondary Flow in Inertial Microfluidics.
    Zhao Q; Yuan D; Zhang J; Li W
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays.
    Yuan D; Zhang J; Yan S; Pan C; Alici G; Nguyen NT; Li WH
    Biomicrofluidics; 2015 Jul; 9(4):044108. PubMed ID: 26339309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial microfluidics: Determining the effect of geometric key parameters on capture efficiency along with a feasibility evaluation for bone marrow cells sorting.
    Ghadiri MM; Hosseini SA; Sadatsakkak SA; Rajabpour A
    Biomed Microdevices; 2021 Aug; 23(3):41. PubMed ID: 34379212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput viscoelastic particle focusing and separation in spiral microchannels.
    Kumar T; Ramachandraiah H; Iyengar SN; Banerjee I; Mårtensson G; Russom A
    Sci Rep; 2021 Apr; 11(1):8467. PubMed ID: 33875755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-efficiency extraction of target particles in viscoelastic contraction-expansion microchannels.
    Wu B; Liu S; Jiang D; Tang W
    Electrophoresis; 2023 Dec; ():. PubMed ID: 38161241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Channel innovations for inertial microfluidics.
    Tang W; Zhu S; Jiang D; Zhu L; Yang J; Xiang N
    Lab Chip; 2020 Oct; 20(19):3485-3502. PubMed ID: 32910129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of focused streams for viscoelastic flow in spiral microchannels.
    Gao H; Zhou J; Naderi MM; Peng Z; Papautsky I
    Microsyst Nanoeng; 2023; 9():73. PubMed ID: 37288322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamentals and applications of inertial microfluidics: a review.
    Zhang J; Yan S; Yuan D; Alici G; Nguyen NT; Ebrahimi Warkiani M; Li W
    Lab Chip; 2016 Jan; 16(1):10-34. PubMed ID: 26584257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic microfluidics: progress and challenges.
    Zhou J; Papautsky I
    Microsyst Nanoeng; 2020; 6():113. PubMed ID: 34567720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel.
    Kwon JY; Kim T; Kim J; Cho Y
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33187390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial Focusing and Separation of Particles in Similar Curved Channels.
    Ying Y; Lin Y
    Sci Rep; 2019 Nov; 9(1):16575. PubMed ID: 31719582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic-inertial separation of microparticle in a gradually contracted microchannel.
    Tian ZZ; Gan CS; Fan LL; Wang JC; Zhao L
    Electrophoresis; 2022 Nov; 43(21-22):2217-2226. PubMed ID: 36084168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics.
    Rasooli R; Çetin B
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial Separation of Particles Assisted by Symmetrical Sheath Flows in a Straight Microchannel.
    Zhang T; Inglis DW; Ngo L; Wang Y; Hosokawa Y; Yalikun Y; Li M
    Anal Chem; 2023 Jul; 95(29):11132-11140. PubMed ID: 37455389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A generalized formula for inertial lift on a sphere in microchannels.
    Liu C; Xue C; Sun J; Hu G
    Lab Chip; 2016 Mar; 16(5):884-92. PubMed ID: 26794086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution particle separation by inertial focusing in high aspect ratio curved microfluidics.
    Cruz J; Hjort K
    Sci Rep; 2021 Jul; 11(1):13959. PubMed ID: 34230536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle Focusing in a Straight Microchannel with Non-Rectangular Cross-Section.
    Kim U; Kwon JY; Kim T; Cho Y
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples.
    Ebrahimi S; Alishiri M; Pishbin E; Afjoul H; Shamloo A
    J Chromatogr A; 2023 Aug; 1705():464200. PubMed ID: 37429078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.