These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 34262897)

  • 21. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering.
    Wada N; Ueta R; Osakabe Y; Osakabe K
    BMC Plant Biol; 2020 May; 20(1):234. PubMed ID: 32450802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9 Technology: Applications and Human Disease Modeling.
    Martinez-Lage M; Torres-Ruiz R; Rodriguez-Perales S
    Prog Mol Biol Transl Sci; 2017; 152():23-48. PubMed ID: 29150003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determining the Pathogenicity of a Genomic Variant of Uncertain Significance Using CRISPR/Cas9 and Human-Induced Pluripotent Stem Cells.
    Ma N; Zhang JZ; Itzhaki I; Zhang SL; Chen H; Haddad F; Kitani T; Wilson KD; Tian L; Shrestha R; Wu H; Lam CK; Sayed N; Wu JC
    Circulation; 2018 Dec; 138(23):2666-2681. PubMed ID: 29914921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Therapeutic Genome Editing by CRISPR/Cas9-Mediated Strategy to Cure Genetic Disorders in Humans: Guide for Molecular Surgeons.
    Ergoren MC; Idlibi R
    Crit Rev Eukaryot Gene Expr; 2019; 29(5):387-399. PubMed ID: 32421996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Successful correction of factor V deficiency of patient-derived iPSCs by CRISPR/Cas9-mediated gene editing.
    Nakamura T; Morishige S; Ozawa H; Kuboyama K; Yamasaki Y; Oya S; Yamaguchi M; Aoyama K; Seki R; Mouri F; Osaki K; Okamura T; Mizuno S; Nagafuji K
    Haemophilia; 2020 Sep; 26(5):826-833. PubMed ID: 32700411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Applications.
    Chang CY; Ting HC; Su HL; Jeng JR
    Cell Transplant; 2018 Mar; 27(3):379-392. PubMed ID: 29806481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-editing tools for stem cell biology.
    Vasileva EA; Shuvalov OU; Garabadgiu AV; Melino G; Barlev NA
    Cell Death Dis; 2015 Jul; 6(7):e1831. PubMed ID: 26203860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements.
    Nasrallah A; Sulpice E; Kobaisi F; Gidrol X; Rachidi W
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Current researches and prospects of human induced pluripotent stem cells and gene editing technology of CRISPR/Cas9 in inherited ocular diseases].
    Fan F; Wu JH; Luo Y
    Zhonghua Yan Ke Za Zhi; 2021 Sep; 57(9):712-716. PubMed ID: 34865411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studying Kidney Disease Using Tissue and Genome Engineering in Human Pluripotent Stem Cells.
    Garreta E; González F; Montserrat N
    Nephron; 2018; 138(1):48-59. PubMed ID: 28988229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Applications of kidney organoids derived from human pluripotent stem cells.
    Kim YK; Nam SA; Yang CW
    Korean J Intern Med; 2018 Jul; 33(4):649-659. PubMed ID: 29961307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR Base Editing in Induced Pluripotent Stem Cells.
    Chang YJ; Xu CL; Cui X; Bassuk AG; Mahajan VB; Tsai YT; Tsang SH
    Methods Mol Biol; 2019; 2045():337-346. PubMed ID: 31250381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR and iPSCs: Recent Developments and Future Perspectives in Neurodegenerative Disease Modelling, Research, and Therapeutics.
    Sen T; Thummer RP
    Neurotox Res; 2022 Oct; 40(5):1597-1623. PubMed ID: 36044181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells.
    Kim EJ; Kang KH; Ju JH
    Korean J Intern Med; 2017 Jan; 32(1):42-61. PubMed ID: 28049282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications.
    Omole AE; Fakoya AOJ
    PeerJ; 2018; 6():e4370. PubMed ID: 29770269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome editing of hPSCs: Recent progress in hPSC-based disease modeling for understanding disease mechanisms.
    Choi DK; Kim YK; HoonYu J; Min SH; Park SW
    Prog Mol Biol Transl Sci; 2021; 181():271-287. PubMed ID: 34127196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correction of Hirschsprung-Associated Mutations in Human Induced Pluripotent Stem Cells Via Clustered Regularly Interspaced Short Palindromic Repeats/Cas9, Restores Neural Crest Cell Function.
    Lai FP; Lau ST; Wong JK; Gui H; Wang RX; Zhou T; Lai WH; Tse HF; Tam PK; Garcia-Barcelo MM; Ngan ES
    Gastroenterology; 2017 Jul; 153(1):139-153.e8. PubMed ID: 28342760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene Editing in Clinical Practice: Where are We?
    Mittal RD
    Indian J Clin Biochem; 2019 Jan; 34(1):19-25. PubMed ID: 30728669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.