These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34263437)

  • 1. Revealing floral metabolite network in tuberose that underpins scent volatiles synthesis, storage and emission.
    Kutty NN; Ghissing U; Mitra A
    Plant Mol Biol; 2021 Aug; 106(6):533-554. PubMed ID: 34263437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological, Physiological and Ultrastructural Changes in Flowers Explain the Spatio-Temporal Emission of Scent Volatiles in Polianthes tuberosa L.
    Maiti S; Mitra A
    Plant Cell Physiol; 2017 Dec; 58(12):2095-2111. PubMed ID: 29036488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiling of volatile and non-volatile metabolites in Polianthes tuberosa L. flowers reveals intraspecific variation among cultivars.
    Kutty NN; Mitra A
    Phytochemistry; 2019 Jun; 162():10-20. PubMed ID: 30844491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis of Polianthes tuberosa during floral scent formation.
    Fan R; Chen Y; Ye X; Wu J; Lin B; Zhong H
    PLoS One; 2018; 13(9):e0199261. PubMed ID: 30183703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic production and emission of floral scent volatiles in Jasminum sambac.
    Bera P; Mukherjee C; Mitra A
    Plant Sci; 2017 Mar; 256():25-38. PubMed ID: 28167035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptome analysis reveals an insight into the candidate genes involved in anthocyanin and scent volatiles biosynthesis in colour changing flowers of Combretum indicum.
    Ghissing U; Kutty NN; Bimolata W; Samanta T; Mitra A
    Plant Biol (Stuttg); 2023 Jan; 25(1):85-95. PubMed ID: 36271596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Petunia × hybrida floral scent production is negatively affected by high-temperature growth conditions.
    Cna'ani A; Mühlemann JK; Ravid J; Masci T; Klempien A; Nguyen TT; Dudareva N; Pichersky E; Vainstein A
    Plant Cell Environ; 2015 Jul; 38(7):1333-46. PubMed ID: 25402319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated metabolome and transcriptome analysis of Magnolia champaca identifies biosynthetic pathways for floral volatile organic compounds.
    Dhandapani S; Jin J; Sridhar V; Sarojam R; Chua NH; Jang IC
    BMC Genomics; 2017 Jun; 18(1):463. PubMed ID: 28615048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composition and Biosynthesis of Scent Compounds from Sterile Flowers of an Ornamental Plant
    Jiang Y; Qian R; Zhang W; Wei G; Ma X; Zheng J; Köllner TG; Chen F
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32276485
    [No Abstract]   [Full Text] [Related]  

  • 10. Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia.
    Fenske MP; Hewett Hazelton KD; Hempton AK; Shim JS; Yamamoto BM; Riffell JA; Imaizumi T
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9775-80. PubMed ID: 26124104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EOBII, a gene encoding a flower-specific regulator of phenylpropanoid volatiles' biosynthesis in petunia.
    Spitzer-Rimon B; Marhevka E; Barkai O; Marton I; Edelbaum O; Masci T; Prathapani NK; Shklarman E; Ovadis M; Vainstein A
    Plant Cell; 2010 Jun; 22(6):1961-76. PubMed ID: 20543029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two showy traits, scent emission and pigmentation, are finely coregulated by the MYB transcription factor PH4 in petunia flowers.
    Cna'ani A; Spitzer-Rimon B; Ravid J; Farhi M; Masci T; Aravena-Calvo J; Ovadis M; Vainstein A
    New Phytol; 2015 Nov; 208(3):708-14. PubMed ID: 26111005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic trajectories of volatile and non-volatile specialised metabolites in 'overnight' fragrant flowers of Murraya paniculata.
    Paul I; Chatterjee A; Maiti S; Bhadoria PBS; Mitra A
    Plant Biol (Stuttg); 2019 Sep; 21(5):899-910. PubMed ID: 30866144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium.
    Yue Y; Yu R; Fan Y
    BMC Genomics; 2015 Jun; 16(1):470. PubMed ID: 26084652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Floral and insect-induced volatile formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana.
    Abel C; Clauss M; Schaub A; Gershenzon J; Tholl D
    Planta; 2009 Jun; 230(1):1-11. PubMed ID: 19322583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional analysis provides molecular insight into flower scent of Lilium 'Siberia'.
    Shi S; Duan G; Li D; Wu J; Liu X; Hong B; Yi M; Zhang Z
    Sci Rep; 2018 Mar; 8(1):5352. PubMed ID: 29599431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemistry and genetics of floral scent: a historical perspective.
    Pichersky E
    Plant J; 2023 Jul; 115(1):18-36. PubMed ID: 36995899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic plasticity of floral volatiles in response to increasing drought stress.
    Campbell DR; Sosenski P; Raguso RA
    Ann Bot; 2019 Mar; 123(4):601-610. PubMed ID: 30364929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated metabolome and transcriptome analysis provides insights on the floral scent formation in Hydrangea arborescens.
    Ke Y; Zhou Y; Lv Y; Qi Y; Wei H; Lei Y; Huang F; Abbas F
    Physiol Plant; 2023; 175(3):e13914. PubMed ID: 37072650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution and diversity of floral scent chemistry in the euglossine bee-pollinated orchid genus Gongora.
    Hetherington-Rauth MC; Ramírez SR
    Ann Bot; 2016 Jul; 118(1):135-48. PubMed ID: 27240855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.