These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34263596)

  • 1. Controllable Synthesis of Supported PdAu Nanoclusters and Their Electronic Structure-Dependent Catalytic Activity in Selective Dehydrogenation of Formic Acid.
    Ye W; Huang H; Zou W; Ge Y; Lu R; Zhang S
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34258-34265. PubMed ID: 34263596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafine PdAu nanoparticles immobilized on amine functionalized carbon black toward fast dehydrogenation of formic acid at room temperature.
    Wu L; Ni B; Chen R; Shi C; Sun P; Chen T
    Nanoscale Adv; 2019 Nov; 1(11):4415-4421. PubMed ID: 36134405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon bowl-confined subnanometric palladium-gold clusters for formic acid dehydrogenation and hexavalent chromium reduction.
    Sun X; Ding Y; Feng G; Yao Q; Zhu J; Xia J; Lu ZH
    J Colloid Interface Sci; 2023 Sep; 645():676-684. PubMed ID: 37167916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen Production by Formic Acid Decomposition over Ca Promoted Ni/SiO
    Faroldi B; Paviotti MA; Camino-Manjarrés M; González-Carrazán S; López-Olmos C; Rodríguez-Ramos I
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of Pd Dopant Atoms inside Au Nanoclusters during Catalytic CO Oxidation.
    Garcia C; Truttmann V; Lopez I; Haunold T; Marini C; Rameshan C; Pittenauer E; Kregsamer P; Dobrezberger K; Stöger-Pollach M; Barrabés N; Rupprechter G
    J Phys Chem C Nanomater Interfaces; 2020 Oct; 124(43):23626-23636. PubMed ID: 33154783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient dehydrogenation of a formic acid-ammonium formate mixture over Au
    Guo XT; Zhang J; Chi JC; Li ZH; Liu YC; Liu XR; Zhang SY
    RSC Adv; 2019 Feb; 9(11):5995-6002. PubMed ID: 35517262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Au-Based Bimetallic Catalysts for Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid under Base-Free Reaction Conditions.
    Su J; Liu Z; Tan Y; Xiao Y; Zhan N; Ding Y
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties.
    Liu CH; Liu RH; Sun QJ; Chang JB; Gao X; Liu Y; Lee ST; Kang ZH; Wang SD
    Nanoscale; 2015 Apr; 7(14):6356-62. PubMed ID: 25786139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amine-Functionalized Natural Halloysite Nanotubes Supported Metallic (Pd, Au, Ag) Nanoparticles and Their Catalytic Performance for Dehydrogenation of Formic Acid.
    Song L; Tan K; Ye Y; Zhu B; Zhang S; Huang W
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane.
    Zahmakiran M; Ozkar S
    Inorg Chem; 2009 Sep; 48(18):8955-64. PubMed ID: 19702246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the enhanced catalytic activity of a Ni-promoted Pd/C catalyst for formic acid dehydrogenation: effects of preparation methods and Ni/Pd ratios.
    Kim Y; Kim J; Kim DH
    RSC Adv; 2018 Jan; 8(5):2441-2448. PubMed ID: 35541443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural evolution of an intermetallic Pd-Zn catalyst selective for propane dehydrogenation.
    Gallagher JR; Childers DJ; Zhao H; Winans RE; Meyer RJ; Miller JT
    Phys Chem Chem Phys; 2015 Nov; 17(42):28144-53. PubMed ID: 25792336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yolk-shell silica dioxide spheres @ metal-organic framework immobilized Ni/Mo nanoparticles as an effective catalyst for formic acid dehydrogenation at low temperature.
    Prabu S; Chiang KY
    J Colloid Interface Sci; 2021 Dec; 604():584-595. PubMed ID: 34280756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anchoring IrPdAu Nanoparticles on NH
    Luo Y; Yang Q; Nie W; Yao Q; Zhang Z; Lu ZH
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8082-8090. PubMed ID: 31986879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green-chemistry Compatible Approach to TiO
    Chang JB; Liu CH; Liu J; Zhou YY; Gao X; Wang SD
    Nanomicro Lett; 2015; 7(3):307-315. PubMed ID: 30464976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Photocatalytic Dehydrogenation of Formic Acid by an
    Issa Hamoud H; Damacet P; Fan D; Assaad N; Lebedev OI; Krystianiak A; Gouda A; Heintz O; Daturi M; Maurin G; Hmadeh M; El-Roz M
    J Am Chem Soc; 2022 Sep; 144(36):16433-16446. PubMed ID: 36047929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Au and Bimetallic PtAu Nanoparticles on PDDA-Graphene Sheets as Electrocatalysts for Formic Acid Oxidation.
    Yung TY; Liu TY; Huang LY; Wang KS; Tzou HM; Chen PT; Chao CY; Liu LK
    Nanoscale Res Lett; 2015 Dec; 10(1):365. PubMed ID: 26377218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient Dehydrogenation of Formic Acid over Binary Palladium-Phosphorous Alloy Nanoclusters on N-Doped Carbon.
    Zhu L; Liang Y; Sun L; Wang J; Xu D
    Inorg Chem; 2021 Jul; 60(14):10707-10714. PubMed ID: 34196533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PdAu alloy nanoparticles supported on nitrogen-doped carbon black as highly active catalysts for Ullmann coupling and nitrophenol hydrogenation reactions.
    Han F; Xia J; Zhang X; Fu Y
    RSC Adv; 2019 Jun; 9(31):17812-17823. PubMed ID: 35520540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.