These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34263766)

  • 1. Theoretically comparative study of spectrally selective solar absorbers in concentrated solar-thermoelectric generators working at high temperature.
    Tapsanit P
    Appl Opt; 2021 Jun; 60(18):5291-5301. PubMed ID: 34263766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling Highly Enhanced Solar Thermoelectric Generator Efficiency by a CuCrMnCoAlN-Based Spectrally Selective Absorber.
    Liu X; Zhao P; He CY; Wang WM; Liu BH; Lu ZW; Wang YF; Guo HX; Liu G; Gao XH
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36288261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced Graphene Oxide-Based Spectrally Selective Absorber with an Extremely Low Thermal Emittance and High Solar Absorptance.
    Liao Q; Zhang P; Yao H; Cheng H; Li C; Qu L
    Adv Sci (Weinh); 2020 Apr; 7(8):1903125. PubMed ID: 32328420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices.
    Jalil SA; Lai B; ElKabbash M; Zhang J; Garcell EM; Singh S; Guo C
    Light Sci Appl; 2020; 9():14. PubMed ID: 32047623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Study of an Efficient Solar Absorber Consisting of Metal Nanoparticles.
    Liu C; Zhang D; Liu Y; Wu D; Chen L; Ma R; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2017 Nov; 12(1):601. PubMed ID: 29168003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blackbody-cavity ideal absorbers for solar energy harvesting.
    Tian Y; Liu X; Ghanekar A; Chen F; Caratenuto A; Zheng Y
    Sci Rep; 2020 Nov; 10(1):20304. PubMed ID: 33219278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Textured N-Type SnSe Polycrystals with Enhanced Thermoelectric Performance.
    Shang PP; Dong J; Pei J; Sun FH; Pan Y; Tang H; Zhang BP; Zhao LD; Li JF
    Research (Wash D C); 2019; 2019():9253132. PubMed ID: 31922144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing solar-thermal energy conversion with silicon-cored tungsten nanowire selective metamaterial absorbers.
    Chang JY; Taylor S; McBurney R; Ying X; Allu G; Chen YB; Wang L
    iScience; 2021 Jan; 24(1):101899. PubMed ID: 33364587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study and comparative analysis of modified solar paraboloidal dish-thermoelectric generator systems.
    Verma V; Rana KB; Sharma SS
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):3983-3993. PubMed ID: 32592056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-perfect spectrally-selective metasurface solar absorber based on tungsten octagonal prism array.
    Xu M; Guo L; Zhang P; Qiu Y; Li Q; Wang J
    RSC Adv; 2022 Jun; 12(26):16823-16834. PubMed ID: 35754914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoelectric Property in Orthorhombic-Domained SnSe Film.
    Horide T; Murakami Y; Hirayama Y; Ishimaru M; Matsumoto K
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27057-27063. PubMed ID: 31310492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perfect selective metamaterial solar absorbers.
    Wang H; Wang L
    Opt Express; 2013 Nov; 21 Suppl 6():A1078-93. PubMed ID: 24514927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tungsten-based highly selective solar absorber using simple nanodisk array.
    Han X; He K; He Z; Zhang Z
    Opt Express; 2017 Nov; 25(24):A1072-A1078. PubMed ID: 29220985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of iodine doping on the electrical, thermal and mechanical properties of SnSe for thermoelectric applications.
    Das A; Chauhan A; Trivedi V; Tiadi M; Kumar R; Battabyal M; Satapathy DK
    Phys Chem Chem Phys; 2021 Feb; 23(7):4230-4239. PubMed ID: 33586719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Enhanced Thermal Robustness and Photothermal Conversion Efficiency of Solar-Selective Absorbers Enabled by High-Entropy Alloy Nitride MoTaTiCrN Nanofilms.
    He CY; Gao XH; Yu DM; Guo HX; Zhao SS; Liu G
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16987-16996. PubMed ID: 33787205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance flat-panel solar thermoelectric generators with high thermal concentration.
    Kraemer D; Poudel B; Feng HP; Caylor JC; Yu B; Yan X; Ma Y; Wang X; Wang D; Muto A; McEnaney K; Chiesa M; Ren Z; Chen G
    Nat Mater; 2011 May; 10(7):532-8. PubMed ID: 21532584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Thermoelectric Energy Harvester Based on Microstructured Quasicrystalline Solar Absorber.
    Silva Oliveira V; Camboim MM; Protasio de Souza C; Silva Guedes de Lima BA; Baiocchi O; Kim HS
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33918230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanically Robust, Stretchable Solar Absorbers with Submicron-Thick Multilayer Sheets for Wearable and Energy Applications.
    Lee HJ; Jung DH; Kil TH; Kim SH; Lee KS; Baek SH; Choi WJ; Baik JM
    ACS Appl Mater Interfaces; 2017 May; 9(21):18061-18068. PubMed ID: 28488438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyphenol-Mediated Liquid Metal Composite Architecture for Solar Thermoelectric Generation.
    Flores N; Centurion F; Zheng J; Baharfar M; Kilani M; Ghasemian MB; Allioux FM; Tang J; Tang J; Kalantar-Zadeh K; Rahim MA
    Adv Mater; 2024 Feb; 36(6):e2308346. PubMed ID: 37924272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing p-Type Thermoelectric Performances of Polycrystalline SnSe via Tuning Phase Transition Temperature.
    Lee YK; Ahn K; Cha J; Zhou C; Kim HS; Choi G; Chae SI; Park JH; Cho SP; Park SH; Sung YE; Lee WB; Hyeon T; Chung I
    J Am Chem Soc; 2017 Aug; 139(31):10887-10896. PubMed ID: 28708407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.