These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34263830)

  • 1. Near IR stationary wave Fourier transform lambda meter in lithium niobate: multiplexing and improving optical sampling using spatially shifted nanogroove antenna.
    Bonduelle M; Heras I; Morand A; Ulliac G; Salut R; Courjal N; Martin G
    Appl Opt; 2021 Jul; 60(19):D83-D92. PubMed ID: 34263830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the vertical radiation pattern issued from multiple nano-groove scattering centers acting as an antenna for future integrated optics Fourier transform spectrometers in the near IR.
    Morand A; Heras I; Ulliac G; Le Coarer E; Benech P; Courjal N; Martin G
    Opt Lett; 2019 Feb; 44(3):542-545. PubMed ID: 30702674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near infrared spectro-interferometer using femtosecond laser written GLS embedded waveguides and nano-scatterers.
    Martin G; Bhuyan M; Troles J; D'Amico C; Stoian R; Le Coarer E
    Opt Express; 2017 Apr; 25(7):8386-8397. PubMed ID: 28380951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.
    Li J; Lu DF; Qi ZM
    Appl Spectrosc; 2015 Sep; 69(9):1112-7. PubMed ID: 26414526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature Fourier Transform Spectrometer Based on Thin-Film Lithium Niobate.
    Zhang L; Gou G; Chen J; Li W; Ma W; Li R; An J; Wang Y; Liu Y; Yan W; Ma T; Liu C; Cheng J; Qi Z; Xue N
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolithic thin-film lithium niobate broadband spectrometer with one nanometre resolution.
    Finco G; Li G; Pohl D; Reig Escalé M; Maeder A; Kaufmann F; Grange R
    Nat Commun; 2024 Mar; 15(1):2330. PubMed ID: 38485996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual Tunable MZIs Stationary-Wave Integrated Fourier Transform Spectrum Detection.
    Chen X; Huang P; Wang N; Zhu Y; Zhang J
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fresnel diffraction effects in Fourier-transform arrayed waveguide grating spectrometer.
    Rodrigo JA; Cheben P; Alieva T; Calvo ML; Florjanczyk M; Janz S; Scott A; Solheim B; Xu DX; Deláge A
    Opt Express; 2007 Dec; 15(25):16431-41. PubMed ID: 19550933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated Lloyd's mirror on planar waveguide facet as a spectrometer.
    Morand A; Benech P; Gri M
    Appl Opt; 2017 Dec; 56(35):9804-9808. PubMed ID: 29240128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet range: From the optical design to the first UV spectrum.
    de Oliveira N; Joyeux D; Phalippou D; Rodier JC; Polack F; Vervloet M; Nahon L
    Rev Sci Instrum; 2009 Apr; 80(4):043101. PubMed ID: 19405645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip Fourier-transform spectrometer based on spatial heterodyning tuned by thermo-optic effect.
    Montesinos-Ballester M; Liu Q; Vakarin V; Ramirez JM; Alonso-Ramos C; Roux XL; Frigerio J; Ballabio A; Talamas E; Vivien L; Isella G; Marris-Morini D
    Sci Rep; 2019 Oct; 9(1):14633. PubMed ID: 31601832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated photodetectors for compact Fourier-transform waveguide spectrometers.
    Grotevent MJ; Yakunin S; Bachmann D; Romero C; Vázquez de Aldana JR; Madi M; Calame M; Kovalenko MV; Shorubalko I
    Nat Photonics; 2023; 17(1):59-64. PubMed ID: 36628352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent FIR/THz wave generation and steering via surface-emitting thin film lithium niobate waveguides.
    Yoshioka V; Jin J; Zhen B
    Opt Express; 2024 Jan; 32(1):639-651. PubMed ID: 38175088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lippmann waveguide spectrometer with enhanced throughput and bandwidth for space and commercial applications.
    Madi M; Ceyssens F; Shorubalko I; Herzig HP; Guldimann B; Giaccari P
    Opt Express; 2018 Feb; 26(3):2682-2707. PubMed ID: 29401806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidimensional near-field sampling spectrometry.
    Renault M; Hadjar Y; Blaize S; Bruyant A; Arnaud L; Lerondel G; Royer P
    Opt Lett; 2010 Oct; 35(19):3303-5. PubMed ID: 20890367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing.
    Stott MA; Ganjalizadeh V; Olsen M; Orfila M; McMurray J; Schmidt H; Hawkins AR
    IEEE J Quantum Electron; 2018 Jun; 54(3):. PubMed ID: 29657333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of spectral resolution by signal padding method in the spatially modulated Fourier transform spectrometer based on a Sagnac interferometer.
    Cho JY; Lee SH; Jang WK
    Appl Opt; 2019 Sep; 58(25):6755-6761. PubMed ID: 31503643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically generated optical waveguide in a lithium-niobate thin film.
    Chen Q; Zhu Y; Wu D; Li T; Li Z; Lu C; Chiang KS; Zhang X
    Opt Express; 2020 Sep; 28(20):29895-29903. PubMed ID: 33114878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniature Fourier transform spectrometer based on wavelength dependence of half-wave voltage of a LiNbO₃ waveguide interferometer.
    Li J; Lu DF; Qi ZM
    Opt Lett; 2014 Jul; 39(13):3923-6. PubMed ID: 24978772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Channel Waveguides in Lithium Niobate and Lithium Tantalate.
    Lu Y; Johnston B; Dekker P; Withford MJ; Dawes JM
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32867367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.