BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34264063)

  • 1. Understanding the Copassivation Effect of Cl and Se for CdTe Grain Boundaries.
    Shah A; Nicholson AP; Fiducia TAM; Abbas A; Pandey R; Liu J; Grovenor C; Walls JM; Sampath WS; Munshi AH
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):35086-35096. PubMed ID: 34264063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Te/CdTe and Al/CdTe Interfacial Energy Band Alignment by Atomistic Modeling.
    Nicholson AP; Shah A; Pandey R; Munshi AH; Sites J; Sampath W
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29412-29421. PubMed ID: 35700391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grain-boundary-enhanced carrier collection in CdTe solar cells.
    Li C; Wu Y; Poplawsky J; Pennycook TJ; Paudel N; Yin W; Haigh SJ; Oxley MP; Lupini AR; Al-Jassim M; Pennycook SJ; Yan Y
    Phys Rev Lett; 2014 Apr; 112(15):156103. PubMed ID: 24785058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic doping and diffusion in CdTe: a DFT study of bulk and grain boundaries.
    Hatton P; Watts M; Zhou Y; Smith R; Goddard P
    J Phys Condens Matter; 2022 Dec; 35(7):. PubMed ID: 36541549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of copassivation of Cl and Cu on CdTe grain boundaries.
    Zhang L; Da Silva JL; Li J; Yan Y; Gessert TA; Wei SH
    Phys Rev Lett; 2008 Oct; 101(15):155501. PubMed ID: 18999610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interrelation of the CdTe Grain Size, Postgrowth Processing, and Window Layer Selection on Solar Cell Performance.
    Shalvey TP; Bagshaw H; Major JD
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42188-42207. PubMed ID: 36084172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface.
    Sun C; Paulauskas T; Sen FG; Lian G; Wang J; Buurma C; Chan MK; Klie RF; Kim MJ
    Sci Rep; 2016 Jun; 6():27009. PubMed ID: 27255415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local Electronic Structure Changes in Polycrystalline CdTe with CdCl
    Berg M; Kephart JM; Munshi A; Sampath WS; Ohta T; Chan C
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9817-9822. PubMed ID: 29528212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Close-Space Sublimation-Deposited Ultra-Thin CdSeTe/CdTe Solar Cells for Enhanced Short-Circuit Current Density and Photoluminescence.
    Bothwell AM; Drayton JA; Jundt PM; Sites JR
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32202534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.
    Crisp RW; Panthani MG; Rance WL; Duenow JN; Parilla PA; Callahan R; Dabney MS; Berry JJ; Talapin DV; Luther JM
    ACS Nano; 2014 Sep; 8(9):9063-72. PubMed ID: 25133302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Sputtered CdTe Thin Films with Electron Backscatter Diffraction and Correlation with Device Performance.
    Nowell MM; Scarpulla MA; Paudel NR; Wieland KA; Compaan AD; Liu X
    Microsc Microanal; 2015 Aug; 21(4):927-35. PubMed ID: 26077102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale imaging of photocurrent and efficiency in CdTe solar cells.
    Leite MS; Abashin M; Lezec HJ; Gianfrancesco A; Talin AA; Zhitenev NB
    ACS Nano; 2014 Nov; 8(11):11883-90. PubMed ID: 25317926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling Defect-Mediated Charge-Carrier Recombination at the Nanometer Scale in Polycrystalline Solar Cells.
    Yoon Y; Yang WD; Ha D; Haney PM; Hirsch D; Yoon HP; Sharma R; Zhitenev NB
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47037-47046. PubMed ID: 31747519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defect Passivation by Amide-Based Hole-Transporting Interfacial Layer Enhanced Perovskite Grain Growth for Efficient p-i-n Perovskite Solar Cells.
    Wang SY; Chen CP; Chung CL; Hsu CW; Hsu HL; Wu TH; Zhuang JY; Chang CJ; Chen HM; Chang YJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40050-40061. PubMed ID: 31596062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion of Alkali Metals in Polycrystalline CuInSe
    Chugh M; Kühne TD; Mirhosseini H
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14821-14829. PubMed ID: 30924332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Band Alignment at Grain Boundaries for Efficiency Enhancement in Cu
    Li W; Li W; Chen G; Wu L; Zhang J; Chen M; Zhong G; Zhu J; Feng Y; Zeng H; Yang C
    ACS Nano; 2023 Aug; 17(16):15742-15750. PubMed ID: 37578321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-cost non-toxic post-growth activation step for CdTe solar cells.
    Major JD; Treharne RE; Phillips LJ; Durose K
    Nature; 2014 Jul; 511(7509):334-7. PubMed ID: 25030171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the Aqueous CdTe Quantum Dots Solar Device Deposited by Blade Coating on Magnesium Zinc Oxide Window Layer.
    Lv B; Liu X; Yan B; Deng J; Gao F; Chen N; Wu X
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorine activated stacking fault removal mechanism in thin film CdTe solar cells: the missing piece.
    Hatton P; Watts MJ; Abbas A; Walls JM; Smith R; Goddard P
    Nat Commun; 2021 Aug; 12(1):4938. PubMed ID: 34426582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells.
    Consonni V; Renet S; Garnier J; Gergaud P; Artús L; Michallon J; Rapenne L; Appert E; Kaminski-Cachopo A
    Nanoscale Res Lett; 2014; 9(1):222. PubMed ID: 24910576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.